17.某車間共有12名工人,隨機(jī)抽取6名,他們某日加工零件個(gè)數(shù)的莖葉圖如圖所示,其中莖為十位數(shù),葉為個(gè)位數(shù).
(Ⅰ) 根據(jù)莖葉圖計(jì)算樣本均值;
(Ⅱ) 日加工零件個(gè)數(shù)大于樣本均值的工人為優(yōu)秀工人.根據(jù)莖葉圖推斷該車間12名工人中有幾名優(yōu)秀工人;
(Ⅲ)在(Ⅱ)的條件下,從該車間12名工人中,任取2人,記取出的2人中優(yōu)秀工人的人數(shù)為隨機(jī)變量ξ,求ξ的期望.

分析 (I)利用平均值的計(jì)算公式即可得出.
(II)由(Ⅰ)知樣本中優(yōu)秀工人占的比例為$\frac{2}{6}$,即可故推斷該車間12名工人中的優(yōu)秀工人.
(III)利用超幾何分布列的計(jì)算公式及其數(shù)學(xué)期望即可得出.

解答 解:(Ⅰ)樣本均值為$\frac{17+19+20+21+25+30}{6}$=$\frac{132}{6}$=22.
(Ⅱ) 由(Ⅰ)知樣本中優(yōu)秀工人占的比例為$\frac{2}{6}$=$\frac{1}{3}$,
故推斷該車間12名工人中有12×$\frac{1}{3}$=4名優(yōu)秀工人.
(Ⅲ) ξ的可能取值為0,1,2.
$p(ξ=0)=\frac{C_4^0C_8^2}{{C_{12}^2}}=\frac{14}{33}$,$p(ξ=1)=\frac{C_4^1C_8^1}{{C_{12}^2}}=\frac{16}{33}$,$p(ξ=2)=\frac{C_4^2C_8^0}{{C_{12}^2}}=\frac{3}{33}$.
$E(ξ)=0×\frac{14}{33}+1×\frac{16}{33}+2×\frac{3}{33}=\frac{22}{33}$.

點(diǎn)評(píng) 本題考查了超幾何分布列的計(jì)算公式及其數(shù)學(xué)期望、莖葉圖及其應(yīng)用,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知定義在區(qū)間$[-\frac{π}{2},π]$上的函數(shù)y=f(x)的圖象關(guān)于直線$x=\frac{π}{4}$對(duì)稱,當(dāng)$\frac{π}{4}≤x≤π$時(shí),f(x)=sinx.
(I)求y=f(x)的解析式;
(II)如果關(guān)于x的方程f(x)=a有解,那么將方程在a取某一確定值時(shí)所求得的所有的解的和記為Ma,求Mb的所有可能取值及對(duì)應(yīng)的a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知圓M:x2+(y-1)2=1<,Q是x軸上的動(dòng)點(diǎn),QA,QB分別切圓M于A,B兩點(diǎn).
(1)若Q(1,0),求切線QA,QB的方程;
(2)若|AB|=$\frac{4\sqrt{2}}{3}$,求直線MQ的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知tanα=2
(1)求$\frac{3sinα+2cosα}{sinα-cosα}$的值;
(2)若α是第三象限角,求cosα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.下列各組函數(shù)表示同一函數(shù)的是(  )
A.f(x)=x,g(x)=($\sqrt{x}$)2B.f(x)=x2+1,g(t)=t2+1C.f(x)=1,g(x)=$\frac{x}{x}$D.f(x)=x,g(x)=|x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)函數(shù)f(x)=$\frac{{{a^{2x}}-({t-1})}}{a^x}$(a>0且a≠1)是定義域?yàn)镽的奇函數(shù).
(1)求t的值;
(2)若f(1)>0,求使不等式f(kx-x2)+f(x-1)<0對(duì)一切x∈R恒成立的實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知二次函數(shù)f(x)=ax2+bx(a,b為常數(shù),且a≠0)滿足條件:f(-x+5)=f(x-3)且方程f(x)=x有等根.
(1)求f(x)的表達(dá)式;
(2)是否存在實(shí)數(shù)m,n(m<n)使f(x)的定義域和值域分別是[m,n]和[3m,3n],如果存在,求出m,n的值;如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)X={$\frac{1}{2}$,$\frac{1}{3}$,$\frac{1}{4}$,$\frac{1}{5}$},若集合G⊆X,定義G中所有元素之乘積為集合G的“積數(shù)”(單元素集合的“積數(shù)”是這個(gè)元素本身),則集合X的所有非空子集的“積數(shù)”的總和為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.${∫}_{-a}^{a}$x[f(x)+f(-x)]dx等于( 。
A.4${∫}_{0}^{a}$xf(x)dxB.2${∫}_{0}^{a}$x[f(x)+f(-x)]dxC.0D.以上都不正確

查看答案和解析>>

同步練習(xí)冊(cè)答案