設(shè)函數(shù)f(x)=xm+ax的導(dǎo)函數(shù)f′(x)=2x+1,則的值等于   
【答案】分析:函數(shù)f(x)=xm+ax的導(dǎo)函數(shù)f′(x)=2x+1,可求出函數(shù)f(x)的解析式,由其解析式的特征求定積分.
解答:解:∵函數(shù)f(x)=xm+ax的導(dǎo)函數(shù)f′(x)=2x+1
∴m=2,a=1
∴f(x)=x2+x
=(x3-x2)|12=(8-1)-(4-1)=
故答案為
點評:本題考查定積分,解題的關(guān)鍵是由被積函數(shù)求出原函數(shù),熟練掌握定積分的定義以及以及一些常用函數(shù)的導(dǎo)數(shù),是準(zhǔn)確求出定積分的知識保證.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=xm+ax的導(dǎo)函數(shù)f′(x)=2x+1,則
2
1
f(-x)dx的值等于( 。
A、
5
6
B、
1
2
C、
2
3
D、
1
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=xm+ax的導(dǎo)數(shù)為f′(x)=2x+1,則數(shù)列{
1f(n)
}(n∈N*)
的前n項和為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=xm+ax的導(dǎo)函數(shù)f′(x)=2x+1,則數(shù)列{
1
f(n)
}(n∈N*)的前n項和是( 。
A、
n
n+1
B、
n+2
n+1
C、
n
n-1
D、
n+1
n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=xm+ax的導(dǎo)函數(shù)f′(x)=2x+1,則
2
1
f(-x)dx
的值等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=xm+ax的導(dǎo)數(shù)f′(x)=2x+3,則數(shù)列{
1
f(n)+2
}(n∈N*)的前n項和是( 。

查看答案和解析>>

同步練習(xí)冊答案