分析 觀察圖形,結(jié)合已知可得f(1)=1,f(2)=4,f(3)=10,由圖中的規(guī)律可得f(n)-f(n-1)=(1+2+3+…+n)從而可得f(n)=f(1)+[f(2)-f(1)]+[f(3)-f(2)]+…+[f(n)-f(n-1)]代入可求.
解答 解:由題意知,f(1)=1,f(2)=1+1+2,f(3)=1+1+2+1+2+3=10,…,
f(n)=1+1+2+1+2+3+…+1+2+3+…+n,
分析可得:f(n)-f(n-1)=1+2+3+…+n=$\frac{n(n+1)}{2}$=$\frac{{n}^{2}}{2}$+$\frac{n}{2}$;
f(n)=[f(n)-f(n-1)]+[f(n-1)-f(n-2)]+[f(n-2)-f(n-3)]+…+f(2)-f(1)+f(1)
=$\frac{1}{2}$(12+22+32+…+n2)=$\frac{1}{12}$n(n+1)(2n+1)+$\frac{1}{4}$n(n+1)=$\frac{1}{6}$n(n+1)(n+2).
故答案為:10,$\frac{1}{6}$n(n+1)(n+2).
點評 本題主要考查數(shù)列求和在實際中的應(yīng)用,解決問題的關(guān)鍵是先由f(1)、f(2)、f(3)的值通過歸納推理得到f(n)的表達(dá)式.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 1 | C. | $\frac{1}{3}$ | D. | $\frac{1}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com