3.甲乙兩位同學(xué)進(jìn)行乒乓球比賽,甲獲勝的概率為0.4,現(xiàn)采用隨機(jī)模擬的方法估計這兩位同學(xué)打3局比賽甲恰好獲勝2局的概率:先利用計算器產(chǎn)生0到9之間取整數(shù)值的隨機(jī)數(shù),制定1,2,3,4表示甲獲勝,用5,6,7,8,9,0表示乙獲勝,再以每三個隨機(jī)數(shù)為一組,代表3局比賽的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了30組隨機(jī)數(shù)
102   231   146   027   590   763   245   207   310   386   350   481   337   286   139
579   684   487   370   175   772   235   246   487   569   047   008   341   287   114
據(jù)此估計,這兩位同學(xué)打3局比賽甲恰好獲勝2局的概率為( 。
A.$\frac{1}{3}$B.$\frac{3}{10}$C.$\frac{2}{5}$D.$\frac{11}{30}$

分析 由題意知模擬打3局比賽甲恰好獲勝2局的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了如下30組隨機(jī)數(shù),在30組隨機(jī)數(shù)中表示打3局比賽甲恰好獲勝2局的有可以通過列舉得到共9組隨機(jī)數(shù),根據(jù)概率公式,得到結(jié)果.

解答 解:由題意知模擬打3局比賽甲恰好獲勝2局的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了如下20組隨機(jī)數(shù),
在30組隨機(jī)數(shù)中表示打3局比賽甲恰好獲勝2局的有:102,146,245,310,481,337,139,235,246,共9組隨機(jī)數(shù),
∴所求概率為$\frac{9}{30}$=$\frac{3}{10}$.
故選B.

點評 本題考查模擬方法估計概率,解題主要依據(jù)是等可能事件的概率,注意列舉法在本題的應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知p:“?x∈[1,2],x2-a≥0”,q:“?x∈R”,使得x2+2ax+2-a=0,那么命題“p∧q”為真命題的充要條件是( 。
A.a≤-2或a=1B.a≤-2或1≤a≤2C.a≥1D.-2≤a≤1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.?dāng)?shù)列{an}的前n項和為Sn,且an+1=$\frac{{a}_{n}-1}{{a}_{n}}$,a1=2,則S2017=1010.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=$\frac{x}{x+2}$-ax2,其中a∈R.
(1)若a=1時,求函數(shù)f(x)的零點;
(2)當(dāng)a>0時,求證:函數(shù)f(x)在(0,+∞)內(nèi)有且僅有一個零點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知M=x2-3x+7,N=-x2+x+1,則( 。
A.M<NB.M>N
C.M=ND.M,N的大小與x的取值有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=2x2+(2-m)x-m,g(x)=x2-x+2m.
(1)若m=1,求不等式f(x)>0的解集;
(2)若m>0,求關(guān)于x的不等式f(x)≤g(x)的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知不等式組$\left\{\begin{array}{l}{y≤5}&{\;}\\{2x-y+3≤0}&{\;}\\{x+y-1≥0}&{\;}\end{array}\right.$表示的平面區(qū)域為D,若?(x,y)∈D,|x|+2y≤a為真命題,則實數(shù)a的取值范圍是(  )
A.[10,+∞)B.[11,+∞)C.[13,+∞)D.[14,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.在數(shù)列{an}中,a1=-2,an+1=an-2n,則a2017的值為( 。
A.22016B.22018C.-22017D.22017

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知函數(shù)f(x)(x∈R)滿足f(x+π)=f(x)+cosx,當(dāng)0≤x<π時,f(x)=-1,則f($\frac{2017π}{3}$)=( 。
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.-1

查看答案和解析>>

同步練習(xí)冊答案