已知線性回歸方程為
y
=0.50x-0.801,則x=25時,y的估計值為
11.699
11.699
分析:根據(jù)回歸直線方程,當x=25時,代入求解y的估計值.
解答:解:已知線性回歸方程為
y
=0.50x-0.801,所以當x=25時,y=0.50×25-0.801=11.699.
故答案為:11.699.
點評:本題主要考查回歸直線方程的應用,將數(shù)值代入即可求得y的估計值,比較基礎.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2013•青島一模)給出以下命題:
①雙曲線
y2
2
-x2=1
的漸近線方程為y=±
2
x

②命題p:“?x∈R+,sinx+
1
sinx
≥2
”是真命題;
③已知線性回歸方程為
?
y
=3+2x
,當變量x增加2個單位,其預報值平均增加4個單位;
④已知
2
2-4
+
6
6-4
=2
,
5
5-4
+
3
3-4
=2
,
7
7-4
+
1
1-4
=2
10
10-4
+
-2
-2-4
=2
,依照以上各式的規(guī)律,得到一般性的等式為
n
n-4
+
8-n
(8-n)-4
=2
,(n≠4)
則正確命題的序號為
①③④
①③④
(寫出所有正確命題的序號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•青島一模)給出以下命題:
①雙曲線
y2
2
-x2=1
的漸近線方程為y=±
2
x
;
②命題p:“?x∈R+,sinx+
1
sinx
≥2
”是真命題;
③已知線性回歸方程為
?
y
=3+2x
,當變量x增加2個單位,其預報值平均增加4個單位;
④設隨機變量ξ服從正態(tài)分布N(0,1),若P(ξ>1)=0.2,則P(-1<ξ<0)=0.6;
⑤已知
2
2-4
+
6
6-4
=2
,
5
5-4
+
3
3-4
=2
,
7
7-4
+
1
1-4
=2
,
10
10-4
+
-2
-2-4
=2
,依照以上各式的規(guī)律,得到一般性的等式為
n
n-4
+
8-n
(8-n)-4
=2
,(n≠4)
則正確命題的序號為
①③⑤
①③⑤
(寫出所有正確命題的序號).

查看答案和解析>>

科目:高中數(shù)學 來源:2010年陜西省高二上學期期中考試數(shù)學理卷 題型:填空題

已知線性回歸方程為y=0.50x-0.81,則x=25時,y的估計值為         .

 

查看答案和解析>>

科目:高中數(shù)學 來源:青島一模 題型:填空題

給出以下命題:
①雙曲線
y2
2
-x2=1
的漸近線方程為y=±
2
x
;
②命題p:“?x∈R+,sinx+
1
sinx
≥2
”是真命題;
③已知線性回歸方程為
?
y
=3+2x
,當變量x增加2個單位,其預報值平均增加4個單位;
④設隨機變量ξ服從正態(tài)分布N(0,1),若P(ξ>1)=0.2,則P(-1<ξ<0)=0.6;
⑤已知
2
2-4
+
6
6-4
=2
,
5
5-4
+
3
3-4
=2
7
7-4
+
1
1-4
=2
,
10
10-4
+
-2
-2-4
=2
,依照以上各式的規(guī)律,得到一般性的等式為
n
n-4
+
8-n
(8-n)-4
=2
,(n≠4)
則正確命題的序號為______(寫出所有正確命題的序號).

查看答案和解析>>

同步練習冊答案