如圖所示的程序框圖,能使輸入的x值與輸出的y值相等的x值個(gè)數(shù)為( 。
A、1B、2C、3D、4
考點(diǎn):選擇結(jié)構(gòu)
專題:算法和程序框圖
分析:程序的功能是求分段函數(shù)y=
x2            x≤2
2x-3        2<x≤5
1
x
               x>5
的值,分段求得滿足y=x的x值,可得答案.
解答: 解:由程序框圖知:程序的功能是求分段函數(shù)y=
x2            x≤2
2x-3        2<x≤5
1
x
               x>5
的值,
若x≤2,由x2=x得x=0或1;
若2<x≤5,由2x-3=x得x=3;
若x>5,由
1
x
=x得x=±1(舍去).
綜上x(chóng)的值由0,1,3.
故選:C.
點(diǎn)評(píng):本題考查了選擇結(jié)構(gòu)的程序框圖,根據(jù)框圖流程判斷算法的功能是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

從1,2,3,…n中這n個(gè)數(shù)中取m(m,n∈N*,3≤m≤n)個(gè)數(shù)組成遞增等差數(shù)列,所有可能的遞增等差數(shù)列的個(gè)數(shù)記為f(n,m).
(Ⅰ)當(dāng)n=5,m=3時(shí),寫出所有可能的遞增等差數(shù)列及f(5,3)的值;
(Ⅱ)求f(100,10);
(Ⅲ)求證:f(n,m)>
(n-m)(n+1)
2(m-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

[x]表示不超過(guò)x的最大整數(shù),已知f(x)=
[x]
x
-a,當(dāng)x>0時(shí),f(x)=
[x]
x
-a有且僅有三個(gè)零點(diǎn),則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,從點(diǎn)M(x0,4)發(fā)出的光線,沿平行于拋物線y2=8x的對(duì)稱軸方向射向此拋物線上的點(diǎn)P,經(jīng)拋物線反射后,穿過(guò)焦點(diǎn)射向拋物線上的點(diǎn)Q,再經(jīng)拋物線反射后射向直線l:x-y-10=0上的點(diǎn)N,經(jīng)直線反射后又回到點(diǎn)M,則x0等于( 。
A、5B、6C、7D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)全集U=R,M={x|
1
8
<2x<1},N={x|ln(-x)>0},則M∩∁UN=(  )
A、{x|x≥-1}
B、{x|-3<x<0}
C、{x|x≤-3}
D、{x|-1≤x<0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,圓O與直線x+
3
y+2=0相切于點(diǎn)P,與x正半軸交于點(diǎn)A,與直線y=
3
x在第一象限的交點(diǎn)為B.點(diǎn)C為圓O上任一點(diǎn),且滿足
OC
=x
OA
+y
OB
,動(dòng)點(diǎn)D(x,y)的軌跡記為曲線Γ.
(1)求圓O的方程及曲線Γ的軌跡方程;
(2)若直線y=x和y=-x分別交曲線Γ于點(diǎn)A、C和B、D,求四邊形ABCD的周長(zhǎng);
(3)已知曲線Γ為橢圓,寫出橢圓Γ的對(duì)稱軸、頂點(diǎn)坐標(biāo)、范圍和焦點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的兩個(gè)焦點(diǎn)分別為F1,F(xiàn)2,離心率為
2
2
,且過(guò)點(diǎn)(2,
2
)

(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)過(guò)點(diǎn)F1作直線l1與橢圓交于M,N兩點(diǎn),過(guò)點(diǎn)F2作直線l2與橢圓交于P,Q兩點(diǎn),且直線l1,l2互相垂直,試問(wèn)
1
|MN|
+
1
|PQ|
是否為定值?如果是,求出該定值;如果不是,求出其取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知一條曲線C在y軸右側(cè),C上每一點(diǎn)到點(diǎn)F(1,0)的距離減去它到y(tǒng)軸距離的差都是1.
(1)求曲線C的方程;
(2)設(shè)直線l交曲線C于A,B兩點(diǎn),線段AB的中點(diǎn)為D(2,-1),求直線l的一般式方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知拋物線C:y2=4x焦點(diǎn)為F,直線l經(jīng)過(guò)點(diǎn)F且與拋物線C相交于A,B兩點(diǎn)
(Ⅰ)若線段AB的中點(diǎn)在直線y=1上,求直線l的方程;
(Ⅱ)若線段|AB|=20,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案