已知f(x)=a1x+a2x2+a3x3+…+anxn,且a1,a2,a3,…,an組成等差數(shù)列(n為正偶數(shù)),又f(1)=n2,f(-1)=n;
(1)求數(shù)列{an}的通項(xiàng)an;
(2)求f(
1
2
)的值;
(3)比較f(
1
2
)的值與3的大小,并說(shuō)明理由.
(1)設(shè)數(shù)列的公差為d,
因?yàn)閒(1)=a1+a2+a3+…+an=n2,則na1+
n(n-1)
2
d=n2,即2a1+(n-1)d=2n.
又f(-1)=-a1+a2-a3+…-an-1+an=n,即
n
2
×d=n,d=2.
解得a1=1.
∴an=1+2(n-1)=2n-1.
(2)f(
1
2
)=(
1
2
)+3(
1
2
2+5(
1
2
3+…+(2n-1)(
1
2
n,①
兩邊都乘以
1
2
,可得
1
2
f(
1
2
)=(
1
2
2+3(
1
2
3+5(
1
2
4+…+(2n-1)(
1
2
n+1,②
①-②,得
1
2
f(
1
2
)=
1
2
+2(
1
2
2+2(
1
2
3+…+2(
1
2
n-(2n-1)(
1
2
n+1
1
2
f(
1
2
)=
1
2
+
1
2
+(
1
2
2+…+(
1
2
n-1-(2n-1)(
1
2
n+1
∴f(
1
2
)=1+1+
1
2
+
1
22
+…+
1
2n-2
-(2n-1)
1
2n
=1+
1-
1
2n-1
1-
1
2
-(2n-1)
1
2n
=1+2-
1
2n-2
-(2n-1)
1
2n
=3-(2n+3)(
1
2
n;
則f(
1
2
)=3-(2n+3)(
1
2
n;
(3)由(2)的結(jié)論,f(
1
2
)=3-(2n+3)(
1
2
n,
又由(2n+3)(
1
2
n>0,
易得3-(2n+3)(
1
2
n<3,
則f(
1
2
)<3.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=a1x+a2x2+a3x3+…+anxn,n為正偶數(shù),且a1,a2,a3,…,an組成等差數(shù)列,又f(1)=n2,f(-1)=n.試比較f(
12
)與3的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=a1x+a2x2+…+anxn(n∈Z*),且y=f(x)的圖象經(jīng)過(guò)點(diǎn)(1,n2).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)當(dāng)n為奇數(shù)時(shí),設(shè)g(x)=
1
2
[f(x)-f(-x)]
,是否存在整數(shù)m和M,使不等式m<g(
1
2
)<M
恒成立,若存在,求出M-m的最小值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=a1x+a2x2+a3x3+…+anxn,且a1,a2,a3,…,an組成等差數(shù)列(n為正偶數(shù)),又f(1)=n2,f(-1)=n;
(1)求數(shù)列{an}的通項(xiàng)an;
(2)求f(
1
2
)的值;
(3)比較f(
1
2
)的值與3的大小,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年高三數(shù)學(xué)復(fù)習(xí)(第2章 函數(shù)):2.15 函數(shù)的綜合運(yùn)用(解析版) 題型:解答題

已知f(x)=a1x+a2x2+a3x3+…+anxn,n為正偶數(shù),且a1,a2,a3,…,an組成等差數(shù)列,又f(1)=n2,f(-1)=n.試比較f()與3的大小.

查看答案和解析>>

同步練習(xí)冊(cè)答案