【題目】年底,我國發(fā)明專利申請(qǐng)量已經(jīng)連續(xù)年位居世界首位,下表是我國年至年發(fā)明專利申請(qǐng)量以及相關(guān)數(shù)據(jù).

注:年份代碼分別表示.

1)可以看出申請(qǐng)量每年都在增加,請(qǐng)問這幾年中哪一年的增長率達(dá)到最高,最高是多少?

2)建立關(guān)于的回歸直線方程(精確到),并預(yù)測(cè)我國發(fā)明專利申請(qǐng)量突破萬件的年份.

參考公式:回歸直線的斜率和截距的最小二乘法估計(jì)分別為,

【答案】(1)2013年的增長率最高,達(dá)到了26%(2)關(guān)于的回歸直線方程為,預(yù)測(cè)我國發(fā)明專利申請(qǐng)量將在2021年突破200萬件

【解析】

1)分別計(jì)算每一年的增長率,比較大小得到答案.

2)根據(jù)公式直接計(jì)算得到回歸直線方程為,再解不等式得到答案.

1)由表格可知20132014,20152016,20172018年的增長率分別如下:

所以2013年的增長率最高,達(dá)到了26%

2)由表格可計(jì)算出:,

關(guān)于的回歸直線方程為

所以根據(jù)回歸方程可預(yù)測(cè),我國發(fā)明專利申請(qǐng)量將在2021年突破200萬件.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某生態(tài)農(nóng)莊有一塊如圖所示的空地,其中半圓O的直徑為300米,A為直徑延長線上的點(diǎn),米,B為半圓上任意一點(diǎn),以AB為一邊作等腰直角,其中BC為斜邊.

;,求四邊形OACB的面積;

現(xiàn)決定對(duì)四邊形OACB區(qū)域地塊進(jìn)行開發(fā),將區(qū)域開發(fā)成垂釣中心,預(yù)計(jì)每平方米獲利10元,將區(qū)域開發(fā)成親子采摘中心,預(yù)計(jì)每平方米獲利20元,則當(dāng)為多大時(shí),垂釣中心和親子采摘中心獲利之和最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直四棱柱中,底面是菱形,,、分別是線段、的中點(diǎn).

1)求證:

2)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱錐SABCD的底面為矩形,SA⊥底面ABCD,點(diǎn)E在線段BC上,以AD為直徑的圓過點(diǎn) E.若SAAB=3,則△SED面積的最小值為_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:極坐標(biāo)與參數(shù)方程

在極坐標(biāo)系下,已知圓O和直線

1求圓O和直線l的直角坐標(biāo)方程;

2當(dāng)時(shí),求直線l與圓O公共點(diǎn)的一個(gè)極坐標(biāo)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國一帶一路戰(zhàn)略構(gòu)思提出后,某科技企業(yè)為抓住一帶一路帶來的機(jī)遇,決定開發(fā)生產(chǎn)一款大型電子設(shè)備.生產(chǎn)這種設(shè)備的年固定成本為500萬元,每生產(chǎn)x臺(tái),需另投入成本萬元,當(dāng)年產(chǎn)量不足60臺(tái)時(shí),萬元;當(dāng)年產(chǎn)量不小于60臺(tái)時(shí),萬元若每臺(tái)設(shè)備售價(jià)為100萬元,通過市場分析,該企業(yè)生產(chǎn)的電子設(shè)備能全部售完.

求年利潤萬元關(guān)于年產(chǎn)量臺(tái)的函數(shù)關(guān)系式;

當(dāng)年產(chǎn)量為多少臺(tái)時(shí),該企業(yè)在這一電子設(shè)備的生產(chǎn)中所獲利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,底面ABCD為正方形,PD⊥平面ABCD,PDAD2.

(1)求該四棱錐P-ABCD的表面積和體積;

(2)求該四棱錐P-ABCD內(nèi)切球的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓的一個(gè)頂點(diǎn)與拋物線的焦點(diǎn)重合,分別是橢圓的左、右焦點(diǎn),其離心率橢圓右焦點(diǎn)的直線與橢圓交于兩點(diǎn).

1)求橢圓的方程;

2)是否存在直線,使得?若存在,求出直線的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若定義在R上的函數(shù)滿足:對(duì)于任意實(shí)數(shù)x、y,總有恒成立,我們稱類余弦型函數(shù).

已知類余弦型函數(shù),且,求的值;

的條件下,定義數(shù)列2,3的值.

類余弦型函數(shù),且對(duì)于任意非零實(shí)數(shù)t,總有,證明:函數(shù)為偶函數(shù),設(shè)有理數(shù),滿足,判斷的大小關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案