精英家教網 > 高中數學 > 題目詳情

【題目】已知拋物線,過焦點作垂直于軸的直線,與拋物線相交于兩點,的準線上一點,的面積為4.

(1)求拋物線的標準方程.

(2)設,若點是拋物線上的任一動點,則是否存在垂直于軸的定直線被以為直徑的圓截得的弦長為定值如果存在,求出該直線方程和弦長,如果不存在,說明理由.

【答案】(1);(2)存在,直線方程為,弦長為2.

【解析】

(1)由,可求出,即可得到拋物線的標準方程;(2)設存在直線滿足條件,,從而可表示出以為直徑的圓的半徑和圓心,及圓心到直線的距離,則圓的弦長為,列出對應的表達式即可得到當時,弦長為定值。

解:(1)易得

所以.

(2)設存在直線滿足條件,

的中點,

因此以為直徑的圓的半徑

點到直線的距離

所截弦長為

要使弦長與變量無關,則令時,弦長為定值2,

這時直線方程為.

故存在垂直于軸的定直線,被以為直徑的圓截得的弦長為2.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數,其中

1)若,求曲線在點處的切線方程;

2)求上的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某漁船在航行中不幸遇險,發(fā)出求救信號,我海軍艦艇在A處獲悉后,立即測出該漁船在方位角為45°、距離A10海里的C處,并測得漁船正沿方位角105°的方向,以9海里/時的速度向某小島B靠攏,我海軍艦艇立即以21海里/時的速度前去營救,恰在小島B處追上漁船.

1)試問艦艇應按照怎樣的航向前進?

2)求出艦艇靠近漁船所用的時間?

(參考數據:)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某企業(yè)生產一種產品,根據經驗,其次品率Q與日產量x(萬件)之間滿足關系, ,已知每生產1萬件合格的產品盈利2萬元,但每生產1萬件次品將虧損1萬元(注:次品率=次品數/生產量, 如表示每生產10件產品,有1件次品,其余為合格品).

1)試將生產這種產品每天的盈利額(萬元)表示為日產量x(萬件)的函數;

2)當日產量為多少時,可獲得最大利潤?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在三棱錐中,,G的重心,過點G作三棱錐的一個截面,使截面平行于直線PBAC,則截面的周長為_________.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】研究變量得到一組樣本數據,進行回歸分析,有以下結論

①殘差圖中殘差點所在的水平帶狀區(qū)域越窄,則回歸方程的預報精確度越高;

②用相關指數來刻畫回歸效果,越小說明擬合效果越好;

③在回歸直線方程中,當變量每增加1個單位時,變量就增加2個單位

④若變量之間的相關系數為,則變量之間的負相關很強

以上正確說法的個數是(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某小組共有五位同學,他們的身高(單位:米)以及體重指標(單位:千克/2

如下表所示:


A

B

C

D

E

身高

1.69

1.73

1.75

1.79

1.82

體重指標

19.2

25.1

18.5

23.3

20.9

(Ⅰ)從該小組身高低于的同學中任選人,求選到的人身高都在以下的概率

(Ⅱ)從該小組同學中任選人,求選到的人的身高都在以上且體重指標都在中的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,A是橢圓的左頂點,點P,Q在橢圓上且均在x軸上方.

(1)若直線AP與OP垂直,求點P的坐標;

(2)若直線AP,AQ的斜率之積為,求直線PQ的斜率的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知四面體ABCD的三組對棱的長分別相等,依次為3,4,x,則x的取值范圍是  

A. B. C. D.

查看答案和解析>>

同步練習冊答案