11.若$\overrightarrow{a}$=(2,3),$\overrightarrow$=(4,m+1),且$\overrightarrow{a}$∥$\overrightarrow$,則m的值是( 。
A.5B.6C.7D.8

分析 利用向量共線定理即可得出.

解答 解:∵$\overrightarrow{a}$∥$\overrightarrow$,
∴2(m+1)-3×4=0,
解得m=5.
故選:A.

點評 本題考查向量共線定理,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.如圖,在長方體ABCD-A1B1C1D1中,AB=AD=4,AA1=2,則四棱錐A-BB1D1D的體積為$\frac{32}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.在△ABC中,若a2<b2+c2,則角A是銳角(填“直角”、“銳角”、“鈍角”).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,在四棱錐P-ABCD中,底面ABCD是正方形.點E是棱PC的中點,平面ABE與棱PD交于點F.PA=AD=PD=2,且平面PAD⊥平面ABCD,
(1)求證:AB∥EF;
(2)證明:AF⊥平面PCD;
(3)求三棱錐P-ACD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知$\overrightarrow{OA}$=(0,-2),$\overrightarrow{OB}$=(0,2),直線l:y=-2,動點P到直線l的距離為d,且d=|$\overrightarrow{PB}$|.
1)求動點P的軌跡方程;
(2)直線m:y=$\sqrt{k}$x+1(k>0)與點P的軌跡交于M,N兩點,當(dāng)$\overrightarrow{AM}$•$\overrightarrow{AN}$≥17時,求直線m的傾斜角α的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知集合A={x|2a≤x<a+3},B={x|x<-1或x>5}.
(1)若a=-1,求A∪B,(∁RA)∩B.
(2)若A∩B=∅,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)f(x)=loga(${\sqrt{1+9{x^2}}$-3x)+1,若f(ln2)=1,則f(ln$\frac{1}{2}$)=(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知集合M⊆{2,7},則這樣的集合M共有( 。
A.3個B.4個C.5個D.6個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)橢圓E的方程為$\frac{x^2}{a^2}$+y2=1(a>1),O為坐標(biāo)原點,直線l與橢圓E交于點A,B,M為線段AB的中點.
(1)若A,B分別為E的左頂點和上頂點,且OM的斜率為-$\frac{1}{2}$,求E的標(biāo)準(zhǔn)方程;
(2)若a=2,且|OM|=1,求△AOB面積的最大值.

查看答案和解析>>

同步練習(xí)冊答案