【題目】已知函數(shù).

1)若函數(shù)的定義域?yàn)?/span>,求實(shí)數(shù)的取值范圍;

2)若函數(shù)的定義域?yàn)?/span>,且滿足如下兩個(gè)條件:①內(nèi)是單調(diào)遞增函數(shù);②存在,使得上的值域?yàn)?/span>,那么就稱函數(shù)希望函數(shù),若函數(shù)希望函數(shù),求實(shí)數(shù)的取值范圍.

【答案】1;(2.

【解析】

1)由函數(shù)的定義域?yàn)?/span>,即恒成立,結(jié)合指數(shù)函數(shù)的性質(zhì),即可求解;

2)根據(jù)題設(shè)得到函數(shù)上的值域?yàn)?/span>,且函數(shù)是單調(diào)遞增函數(shù),由對(duì)數(shù)函數(shù)的性質(zhì),得到,轉(zhuǎn)化為的兩個(gè)根,結(jié)合二次函數(shù)的性質(zhì),即可求解.

1)由題意,函數(shù)的定義域?yàn)?/span>,即恒成立,

所以恒成立,因?yàn)?/span>,所以,所以的取值范圍.

2)因?yàn)楹瘮?shù)是“希望函數(shù)”,

所以上的值域?yàn)?/span>,且函數(shù)是單調(diào)遞增函數(shù),

所以,即,所以的兩個(gè)根,

設(shè),

因?yàn)?/span>,所以2個(gè)不等的正實(shí)數(shù)根,

所以且兩根之積等于,解得

所以實(shí)數(shù)的取值范圍是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知的圖像過點(diǎn),且在點(diǎn)處的切線方程為.

1)求的解析式;

2)求函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)是拋物線的焦點(diǎn),點(diǎn)為拋物線的對(duì)稱軸與其準(zhǔn)線的交點(diǎn),過作拋物線的切線,切點(diǎn)為,若點(diǎn)恰好在以,為焦點(diǎn)的雙曲線上,則雙曲線的離心率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線過坐標(biāo)原點(diǎn)的方程為

(1)當(dāng)直線的斜率為時(shí),與圓相交所得的弦長(zhǎng);

(2)設(shè)直線與圓交于兩點(diǎn),的中點(diǎn),求直線的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右有頂點(diǎn)分別是、,上頂點(diǎn)是,圓的圓心到直線的距離是,且橢圓的右焦點(diǎn)與拋物線的焦點(diǎn)重合.

(Ⅰ)求橢圓的方程;

(Ⅱ)平行于軸的動(dòng)直線與橢圓和圓在第一象限內(nèi)的交點(diǎn)分別為、,直線、軸的交點(diǎn)記為,.試判斷是否為定值,若是,證明你的結(jié)論.若不是,舉反例說明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓的離心率為,過左焦點(diǎn)且斜率為的直線交橢圓兩點(diǎn),線段的中點(diǎn)為,直線交橢圓兩點(diǎn).

(1)求橢圓的方程;

(2)求證:點(diǎn)在直線上;

(3)是否存在實(shí)數(shù),使得?若存在,求出的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《中華人民共和國(guó)個(gè)人所得稅法》第十四條中有下表(部分):

個(gè)人所得稅稅率(工資、薪金所得適用)

級(jí)數(shù)

全月應(yīng)納所得額

稅率(%)

1

不超過元的部分

2

超過元至元的部分

3

超過元至元的部分

4

超過元至元的部分

5

超過元至元的部分

上表中全月應(yīng)納稅所得額是從月工資、薪金收入中減去元后的余額.如果某人月工資、薪金收入為,那么他應(yīng)納的個(gè)人所得稅為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正項(xiàng)等比數(shù)列滿足,,數(shù)列滿足.

1)求數(shù)列的通項(xiàng)公式;

2)令,求數(shù)列的前項(xiàng)和;

3)若,且對(duì)所有的正整數(shù)都有成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題在區(qū)間上是減函數(shù);

命題q:不等式無解。

若命題“”為真,命題“”為假,求實(shí)數(shù)m 的取值范圍。

查看答案和解析>>

同步練習(xí)冊(cè)答案