【題目】在直角坐標系中,圓的方程為.

1)若圓上有兩點,關(guān)于直線對稱,且,求直線的方程;

2)圓軸相交于,兩點,圓內(nèi)的動點使,成等比數(shù)列,求的取值范圍.

【答案】1,;(2.

【解析】

1)根據(jù),關(guān)于直線對稱,可以求出直線的斜率,這樣設(shè)出直線方程,利用圓的垂徑定理、點到直線的距離公式,可以求出直線的方程;

2)求出兩點坐標,設(shè),由等比數(shù)列的性質(zhì),可得等式,最后求出的表達式,再根據(jù)點在圓內(nèi),最后求出的取值范圍.

1)因為直線的斜率為,所以直線的斜率為2,設(shè)直線的方程為:,因為的半徑為2,所以圓心到直線的距離為:,因此有:,所以

,.

2)易知.設(shè),由,,成等比數(shù)列,得,兩邊平方得,即.

.

由于點在圓內(nèi),∴.,∴,得.

的取值范圍為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為了解某產(chǎn)品的獲利情況,將今年17月份的銷售收入(單位:萬元)與純利潤(單位:萬元)的數(shù)據(jù)進行整理后,得到如下表格:

月份

1

2

3

4

5

6

7

銷售收入

13

13.5

13.8

14

14.2

14.5

15

純利潤

3.2

3.8

4

4.2

4.5

5

5.5

該公司先從這7組數(shù)據(jù)中選取5組數(shù)據(jù)求純利潤關(guān)于銷售收入的線性回歸方程,再用剩下的2組數(shù)據(jù)進行檢驗.假設(shè)選取的是2月至6月的數(shù)據(jù).

1)求純利潤關(guān)于銷售收入的線性回歸方程(精確到0.01);

2)若由線性回歸方程得到的估計數(shù)據(jù)與檢驗數(shù)據(jù)的誤差均不超過0.1萬元,則認為得到的線性回歸方程是理想的.試問該公司所得線性回歸方程是否理想?

參考公式:,,;參考數(shù)據(jù):.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司計劃投資開發(fā)一種新能源產(chǎn)品,預(yù)計能獲得10萬元1000萬元的收益.現(xiàn)準備制定一個對開發(fā)科研小組的獎勵方案:獎金(單位:萬元)隨收益(單位:萬元)的增加而增加,且獎金總數(shù)不超過9萬元,同時獎金總數(shù)不超過收益的.

(Ⅰ)若建立獎勵方案函數(shù)模型,試確定這個函數(shù)的定義域、值域和的范圍;

(Ⅱ)現(xiàn)有兩個獎勵函數(shù)模型:①;②.試分析這兩個函數(shù)模型是否符合公司的要求?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中,平面平面,,,,分別為線段,上的點,且,.

(1)求證:平面;

(2)若直線與平面所成的角為,求平面與平面所成的銳二面角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某網(wǎng)絡(luò)平臺從購買該平臺某課程的客戶中,隨機抽取了100位客戶的數(shù)據(jù),并將這100個數(shù)據(jù)按學(xué)時數(shù),客戶性別等進行統(tǒng)計,整理得到如表:

學(xué)時數(shù)

男性

18

12

9

9

6

4

2

女性

2

4

8

2

7

13

4

(1)根據(jù)上表估計男性客戶購買該課程學(xué)時數(shù)的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表,結(jié)果保留小數(shù)點后兩位);

(2)從這100位客戶中,對購買該課程學(xué)時數(shù)在20以下的女性客戶按照分層抽樣的方式隨機抽取7人,再從這7人中隨機抽取2人,求這2人購買的學(xué)時數(shù)都不低于15的概率.

(3)將購買該課程達到25學(xué)時及以上者視為“十分愛好該課程者”,25學(xué)時以下者視,為“非十分愛好該課程者”.請根據(jù)已知條件完成以下列聯(lián)表,并判斷是否有99.9%的把握認為“十分愛好該課程者”與性別有關(guān)?

非十分愛好該課程者

十分愛好該課程者

合計

男性

女性

合計

100

附:,

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】參加衡水中學(xué)數(shù)學(xué)選修課的同學(xué),對某公司的一種產(chǎn)品銷量與價格進行統(tǒng)計,得到如下數(shù)據(jù)和散點圖:

定價(元/

年銷售

(參考數(shù)據(jù):

(I)根據(jù)散點圖判斷,哪一對具有較強的線性相關(guān)性(給出判斷即可,不必說明理由)?

(II)根據(jù)(I)的判斷結(jié)果有數(shù)據(jù),建立關(guān)于的回歸方程(方程中的系數(shù)均保留兩位有效數(shù)字);

(III)定價為多少元/時,年利潤的預(yù)報值最大?

附:對一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)為了組建一支業(yè)余足球隊,在高一年級隨機選取50名男生測量身高,發(fā)現(xiàn)被測男生的身高全部在之間,將測量結(jié)果按如下方式分成六組:第1,第2,,第6,如圖是按上述分組得到的頻率分布直方圖,以頻率近似概率.

1)若學(xué)校要從中選1名男生擔(dān)任足球隊長,求被選取的男生恰好在第5組或第6組的概率;

2)試估計該校高一年級全體男生身高的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點值代表)與中位數(shù);

3)現(xiàn)在從第5與第6組男生中選取兩名同學(xué)擔(dān)任守門員,求選取的兩人中最多有1名男生來自第5組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)不同身高的未成年男性的體重平均值如下表:

身高x(cm)

60

70

80

90

100

110

120

130

140

體重y(kg)

6.13

7.90

9.99

12.15

15.02

17.50

20.92

26.86

31.11

已知之間存在很強的線性相關(guān)性,

(Ⅰ)據(jù)此建立之間的回歸方程;

(Ⅱ)若體重超過相同身高男性體重平均值的倍為偏胖,低于倍為偏瘦,那么這個地區(qū)一名身高體重為 的在校男生的體重是否正常?

參考數(shù)據(jù):

附:對于一組數(shù)據(jù),其回歸直線 中的斜率和截距的最小二乘估計分別為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知的內(nèi)角、、的對邊分別為、、內(nèi)一點,若分別滿足下列四個條件:

;

;

;

;

則點分別為的(

A.外心、內(nèi)心、垂心、重心B.內(nèi)心、外心、垂心、重心

C.垂心、內(nèi)心、重心、外心D.內(nèi)心、垂心、外心、重心

查看答案和解析>>

同步練習(xí)冊答案