15.下列命題中,真命題的是( 。
A.1弧度是一度的圓心角所對(duì)的弧
B.1弧度是長(zhǎng)度為半徑的弧
C.1弧度是一度的弧與一度的角之和
D.1弧度是長(zhǎng)度等于半徑長(zhǎng)的弧所對(duì)的圓心角的大小

分析 根據(jù)弧度的定義與應(yīng)用,對(duì)選項(xiàng)中的命題進(jìn)行分析、判斷即可.

解答 解:根據(jù)弧度的定義知:長(zhǎng)度等于半徑長(zhǎng)的弧所對(duì)的圓心角叫做1弧度的角.
故選:D.

點(diǎn)評(píng) 本題考查了弧度的定義與應(yīng)用問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)$f(x)={log_4}\frac{x-1}{x+1}$.
(Ⅰ)若$f(a)=\frac{1}{2}$,求a的值;
(Ⅱ)判斷函數(shù)f(x)的奇偶性,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.如圖,在三棱錐P-ABC中,直線(xiàn)PA⊥平面ABC,且∠ABC=90°,又點(diǎn)Q,M,N分別是線(xiàn)段PB,AB,BC的中點(diǎn),且點(diǎn)K是線(xiàn)段MN上的動(dòng)點(diǎn)
(1)證明:直線(xiàn)QK∥平面PAC
(2)若PA=AB=BC=8,且K為MN的中點(diǎn),求二面角Q-AK-M的平面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,設(shè)E為PD的中點(diǎn).
(1)證明:PB∥平面AEC;
(2)設(shè)異面直線(xiàn)BP與CD所成角為45°,AP=1,AD=$\sqrt{3}$,求三棱錐E-ACD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.集合M={x|-2≤x≤5}.
(1)若M⊆N,N={x|m-6≤x≤2m-1},求m的取值范圍;
(2)若N⊆M,N={x|m+1≤x≤2m-1},求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.若α=3,則α的終邊落在第二象限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.從甲乙兩個(gè)城市分別隨機(jī)抽取16臺(tái)自動(dòng)售貨機(jī),對(duì)其銷(xiāo)售額進(jìn)行統(tǒng)計(jì),統(tǒng)計(jì)數(shù)據(jù)用莖葉圖表示(如圖所示,設(shè)甲乙兩組數(shù)據(jù)的平均數(shù)分別為x,x,中位數(shù)分別為m,m,則(  )
A.x<x,m>mB.x<x,m<mC.x>x,m>mD.x>x,m<m

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.解關(guān)于x的不等式ax2-(2a-1)x+a-1<0(a∈R).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.函數(shù)f(x)=ax-1+2的圖象恒過(guò)定點(diǎn)( 。
A.(3,1)B.(0,2)C.(1,3)D.(0,1)

查看答案和解析>>

同步練習(xí)冊(cè)答案