已知f(x)=g(x)+2,且g(x)為奇函數(shù),若f(2)=3,則f(-2)=________.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:江蘇省阜寧縣中學(xué)2011-2012學(xué)年高二下學(xué)期期中調(diào)研考試數(shù)學(xué)試題 題型:022

已知f(x)=x2+bx+c為偶函數(shù),曲線y=f(x)過(guò)點(diǎn)(2,5),g(x)=(x+m)f(x).若曲線y=g(x)有斜率為0的切線,則實(shí)數(shù)m的取值范圍為_(kāi)_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2007年普通高等學(xué)校招生全國(guó)統(tǒng)一考試、理科數(shù)學(xué)(遼寧卷) 題型:013

已知f(x)與g(x)是定義在R上的連續(xù)函數(shù),如果f(x)與g(x)僅當(dāng)x=0時(shí)的函數(shù)值為0,且f(x)≥g(x),那么下列情形不可能出現(xiàn)的是

[  ]

A.0是f(x)的極大值,也是g(x)的極大值

B.0是f(x)的極小值,也是g(x)的極小值

C.0是f(x)的極大值,但不是g(x)的極值

D.0是f(x)的極小值,但不是g(x)的極值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012高考數(shù)學(xué)二輪名師精編精析(3):函數(shù)性質(zhì) 題型:013

已知f(x)與g(x)是定義在R上的連續(xù)函數(shù),如果f(x)與g(x)僅當(dāng)x=0時(shí)的函數(shù)值為0,且f(x)≥g(x),那么下列情形不可能出現(xiàn)的是

[  ]
A.

0是f(x)的極大值,也是g(x)的極大值

B.

0是f(x)的極小值,也是g(x)的極小值

C.

0是f(x)的極大值,但不是g(x)的極值

D.

0是f(x)的極小值,但不是g(x)的極值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009年高考數(shù)學(xué)文科(重慶卷) 題型:044

已知f(x)x2bxc為偶函數(shù),曲線yf(x)過(guò)點(diǎn)(25),g(x)(xa)f(x)

(Ⅰ)求曲線yg(x)有斜率為0的切線,求實(shí)數(shù)a的取值范圍;

(Ⅱ)若當(dāng)x=-1時(shí)函數(shù)yg(x)取得極值,確定yg(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年河北省高三8月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3.

(1)求f(x)的解析式;

(2)若過(guò)點(diǎn)A(2,m)可作曲線y=f(x)的三條切線,求實(shí)數(shù)m的取值范圍.

【解析】本試題主要考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。第一問(wèn),利用函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3,得到c=-3 ∴a=1, f(x)=x3-3x

(2)中設(shè)切點(diǎn)為(x0,x03-3x0),因?yàn)檫^(guò)點(diǎn)A(2,m),所以∴m-(x03-3x0)=(3x02-3)(2-x0)分離參數(shù)∴m=-2x03+6x02-6

然后利用g(x)=-2x3+6x2-6函數(shù)求導(dǎo)數(shù),判定單調(diào)性,從而得到要是有三解,則需要滿足-6<m<2

解:(1)f′(x)=3ax2+2bx+c

依題意

又f′(0)=-3

∴c=-3 ∴a=1 ∴f(x)=x3-3x

(2)設(shè)切點(diǎn)為(x0,x03-3x0),

∵f′(x)=3x2-3,∴f′(x0)=3x02-3

∴切線方程為y-(x03-3x0)=(3x02-3)(x-x0)

又切線過(guò)點(diǎn)A(2,m)

∴m-(x03-3x0)=(3x02-3)(2-x0)

∴m=-2x03+6x02-6

令g(x)=-2x3+6x2-6

則g′(x)=-6x2+12x=-6x(x-2)

由g′(x)=0得x=0或x=2

∴g(x)在(-∞,0)單調(diào)遞減,(0,2)單調(diào)遞增,(2,+∞)單調(diào)遞減.

∴g(x)極小值=g(0)=-6,g(x)極大值=g(2)=2

畫(huà)出草圖知,當(dāng)-6<m<2時(shí),m=-2x3+6x2-6有三解,

所以m的取值范圍是(-6,2).

 

查看答案和解析>>

同步練習(xí)冊(cè)答案