7.某幾何體的三視圖如圖所示,求該幾何體的表面積和體積.

分析 由已知中三視圖可得,該幾何體是以俯視圖為底面的四棱錐,代入表面積和體積公式,可得答案.

解答 解:由已知中三視圖可得,該幾何體是以俯視圖為底面的四棱錐,
其直觀圖如下圖所示:

其中AB=BC=CD=AD=VO=20,OC=OD=10,
OA=OB=VC=VD=10$\sqrt{5}$,VA=VB=30,
故底面面積為:400,高為20,
故棱錐的體積V=$\frac{8000}{3}$,
側(cè)面VCD的面積為:200,
側(cè)面VBC和VAD的面積為:100$\sqrt{5}$,
側(cè)面VAB的面積為:200$\sqrt{2}$,
故表面積S=600+200$\sqrt{5}$+200$\sqrt{2}$

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是棱錐的體積和表面積,棱錐的三視圖,根據(jù)已知分析出幾何體的形狀,是解答的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.曲線f(x)=x2+2x-ex在點(diǎn)(0,f(0))處的切線的方程為(  )
A.y=x-1B.y=x+1C.y=2x-1D.y=2x+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知函數(shù)f(x)=ax2+bx+c的圖象如圖所示,則下列結(jié)論不正確的是( 。
A.4a-2b+c=0B.c<-2aC.a+b+c<0D.a≤b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.用一個(gè)平面去截一個(gè)圓柱,得到的圖形不可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.一個(gè)圓錐與一個(gè)球的體積相等,圓錐的底面半徑是球半徑的3倍,圓錐的高與球半徑之比為( 。
A.4:9B.9:4C.4:27D.27:4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若函數(shù)f(x)=xln(x+$\sqrt{a+{x}^{2}}$)為偶函數(shù),則a的值為( 。
A.0B.1C.-1D.1或-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若拋物線y2=2x上有兩點(diǎn)A、B,且AB垂直于x軸,若|AB|=2$\sqrt{2}$,則點(diǎn)A到拋物線的準(zhǔn)線的距離為(  )
A.$\frac{1}{2}$B.$\frac{3}{2}$C.2D.$\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知直線l:y=x+2與圓x2+y2=6相交的弦長(zhǎng)為橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的長(zhǎng)軸長(zhǎng),且橢圓的離心率為$\frac{1}{2}$,若拋物線C:y2=2px的焦點(diǎn)與橢圓的焦點(diǎn)重合.
(1)求該橢圓的方程和拋物線的方程
(2).若過拋物線C的焦點(diǎn)且與直線l平行的直線交拋物線于M,N兩點(diǎn),點(diǎn)P為直線l上的動(dòng)點(diǎn),試求$\overrightarrow{PM}$$•\overrightarrow{PN}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知集合A={y|y=$\frac{|x|}{x}$(x≠0)},B={x|-1≤x≤2},則(  )
A.A⊆BB.B⊆AC.A=BD.A∩B=∅

查看答案和解析>>

同步練習(xí)冊(cè)答案