(I)A為△ABC的內(nèi)角,則sinA+cosA的取值范圍是______
【答案】分析:(I)根據(jù)輔助角公式,我們可以將sinA+cosA化為正弦型函數(shù)的形式,根據(jù)A為△ABC的內(nèi)角,即可得到sinA+cosA的取值范圍;
(II)∠AOC=α,我們可以得到x,y的解析式(含參數(shù)α),根據(jù)輔助角公式,我們可以得到x+y的表達(dá)式,然后根據(jù)三角函數(shù)的性質(zhì),即可得到x+y的最大值.
解答:解:(I)∵sinA+cosA=sin(A+
又∵A∈(0,π)
sin(A+)∈;
(II)設(shè)∠AOC=α


∴x+y=2[cosα+cos(120°-α)]=cosα+sinα=2sin(x+)≤2
故x+y的最大值是 2
故答案為:,2
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是正弦函數(shù)的值域,向量的加法及其幾何意義,熟練掌握輔助角公式及正弦型函數(shù)的性質(zhì)是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(I)A為△ABC的內(nèi)角,則sinA+cosA的取值范圍是
(-1,
2
]
(-1,
2
]

(II)給定兩個(gè)長(zhǎng)度為1的平面向量
OA
OB
,它們的夾角為120°.
如圖所示,點(diǎn)C在以O(shè)為圓心的圓弧
AB
上變動(dòng).若
OC
=x
OA
+y
OB
,其中x,y∈R,則x+y的最大值是
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
m
=(
3
sinx+cosx,1),
n
=(
1
2
f(x),cosx),
m
n

(I)求f(x)的單調(diào)增區(qū)間及在[-
π
6
,
π
4
]
內(nèi)的值域;
(II)已知A為△ABC的內(nèi)角,若f(
A
2
)=1+
3
,a=1,b=
2
,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

(I)A為△ABC的內(nèi)角,則sinA+cosA的取值范圍是________.
(II)給定兩個(gè)長(zhǎng)度為1的平面向量數(shù)學(xué)公式數(shù)學(xué)公式,它們的夾角為120°.
如圖所示,點(diǎn)C在以O(shè)為圓心的圓弧數(shù)學(xué)公式上變動(dòng).若數(shù)學(xué)公式,其中x,y∈R,則x+y的最大值是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知向量數(shù)學(xué)公式數(shù)學(xué)公式
(I)求f(x)的單調(diào)增區(qū)間及在數(shù)學(xué)公式內(nèi)的值域;
(II)已知A為△ABC的內(nèi)角,若數(shù)學(xué)公式,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案