【題目】已知,其中.

(1)求函數(shù)的極大值點(diǎn);

(2)當(dāng)時(shí),若在上至少存在一點(diǎn),使成立,求的取值范圍.

【答案】(1)1;(2).

【解析】試題分析:(1)求導(dǎo),對(duì)進(jìn)行四類討論,得到極大值的情況;(2上至少存在一點(diǎn),使成立,等價(jià)于當(dāng)時(shí), ,結(jié)合1的單調(diào)性情況,求,得到的取值范圍.

試題解析:

(1)由已知

當(dāng),即時(shí), 上遞減,在上遞增,無(wú)極大值;

當(dāng),即時(shí), 上遞增,在上遞減,在上遞增,所以處取極大值;

當(dāng),即時(shí), 上遞增,無(wú)極大值;

當(dāng)時(shí),即時(shí), 上遞增,在上遞減,在上遞增,故處取極大值.

綜上所述,當(dāng)時(shí), 無(wú)極大值;

當(dāng)時(shí), 的極大值點(diǎn)為;

當(dāng)時(shí)的極大值點(diǎn)為.

(2)在上至少存在一點(diǎn),使成立,等價(jià)于當(dāng)時(shí), .

由(1)知,①當(dāng)時(shí),函數(shù)上遞減,在上遞增,

∴要使成立,必須使成立或成立,

,解得

,解得.

,∴.

②當(dāng)時(shí),函數(shù)上遞增,在上遞減,

綜上所述,當(dāng)時(shí),在上至少存在一點(diǎn),使成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,以橢圓的一個(gè)短軸端點(diǎn)及兩個(gè)焦點(diǎn)構(gòu)成的三角形的面積為,圓C方程為.

(1)求橢圓及圓C的方程;

(2)過(guò)原點(diǎn)O作直線l與圓C交于A,B兩點(diǎn),若,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖莖葉圖記錄了甲、乙兩組各四名同學(xué)的植樹棵樹.乙組記錄中有一個(gè)數(shù)據(jù)模糊,無(wú)法確認(rèn),在圖中以X表示.
(注:方差 ,其中 為x1 , x2 , …xn的平均數(shù))

(1)如果X=8,求乙組同學(xué)植樹棵樹的平均數(shù)和方差;
(2)如果X=9,分別從甲、乙兩組中隨機(jī)選取一名同學(xué),求這兩名同學(xué)的植樹總棵數(shù)為19的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】袋中有大小相同的紅、黃兩種顏色的球各1個(gè),從中任取1只,有放回地抽取3次. 求:
(1)3只全是紅球的概率;
(2)3只顏色全相同的概率;
(3)3只顏色不全相同的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,以O(shè)x軸為始邊作兩個(gè)銳角α,β,它們的終邊分別交單位圓于A,B兩點(diǎn).已知A,B兩點(diǎn)的橫坐標(biāo)分別是

(1)求tan(α+β)的值;
(2)求α+2β的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,從氣球A上測(cè)得正前方的河流的兩岸B,C的俯角分別為75°,30°,此時(shí)氣球的高是60m,則河流的寬度BC等于( )

A.m
B.m
C.m
D.m

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓,某拋物線的頂點(diǎn)為原點(diǎn),焦點(diǎn)為圓心,經(jīng)過(guò)點(diǎn)的直線交圓 兩點(diǎn),交此拋物線于, 兩點(diǎn),其中, 在第一象限, , 在第二象限.

(1)求該拋物線的方程;

(2)是否存在直線,使的等差中項(xiàng)?若存在,求直線的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知向量| |=2,| |=1,(2 ﹣3 )(2 )=9.
(1)求向量 與向量 的夾角θ;
(2)求向量 方向上的投影.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的一元二次不等式mx2﹣(1﹣m)x+m≥0的解集為R,則實(shí)數(shù)m的取值范圍是

查看答案和解析>>

同步練習(xí)冊(cè)答案