科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù)f(x)=sin 2x-cos2x-,x∈R.
(1)求函數(shù)f(x)的最小值和最小正周期;
(2)設(shè)△ABC的內(nèi)角A、B、C的對邊分別為a、b、c,且c=,f(C)=0,若sin B=2sin A,求a,b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知各項均為正數(shù)的數(shù)列的前項和為,且對任意的,都有.
(1)求數(shù)列的通項公式;
(2)若數(shù)列滿足,且,求數(shù)列的前 項和;
(3)在(2)的條件下,是否存在整數(shù),使得對任意的正整數(shù),都有。若存在,求出的值;若不存在,試說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖平面SAC⊥平面ACB,ΔSAC是邊長為4的等邊三角形,ΔACB為直角三角形,∠ACB=90°,BC=,求二面角S-AB-C的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖,矩形花園中,,,是的中點,在該花園中有一花圃,其形狀是以為直角頂點的,其中、分別落在線段和線段上.分別記為(),的周長為,的面積為.
(Ⅰ)試求的取值范圍;
(Ⅱ)為何值時的值為最小,并求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知曲線C的極坐標方程是ρ=2,以極點為原點,極軸為x軸的正半軸建立平面直角坐標系,直線L的參數(shù)方程為 (t為參數(shù))
(1)寫出直線L的普通方程與Q曲線C的直角坐標方程;
(2)設(shè)曲線C經(jīng)過伸縮變換得到曲線C,設(shè) M(x,y)為C上任意一點,求的最小值,并求相應(yīng)的點M的坐標
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com