已知冪函數(shù)y=xα的圖象過點(2,
2
),則f(4)的值是(  )
A、
1
2
B、1
C、2
D、4
考點:冪函數(shù)的概念、解析式、定義域、值域
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:用待定系數(shù)法求出冪函數(shù)f(x)的解析式,計算出f(4)的值.
解答: 解:∵冪函數(shù)f(x)=xa的圖象過點(2,
2
),
∴f(2)=2α=
2

解得a=
1
2
,
f(x)=
x
,
∴f(4)=
4
=2.
故選:C.
點評:本題考查了求冪函數(shù)的解析式的應(yīng)用問題,也考查了求函數(shù)值的問題,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a(sinx-cosx)-2sinxcosx,x∈R,a是常數(shù).
(1)當(dāng)a=0時,判斷f(1)和f(
3
2
)的大小,并說明理由;
(2)求函數(shù)f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是一算法的程序框圖,若此程序運行結(jié)果為s=28,則在判斷框中應(yīng)填入關(guān)于k的判斷條件是( 。
A、k<9B、k<8
C、k<7D、k<6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=3sin(2x-
π
6
)+2,
(1)求f(x)的增區(qū)間;
(2)求f(x)在區(qū)間[-
π
12
,
π
2
]上的最大、最小值及相應(yīng)的x值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線y=x2上的點P處的切線的傾斜角為
π
4
,則點P的坐標(biāo)為( 。
A、(0,0)
B、(2,4)
C、(
1
4
,
1
16
D、(
1
2
,
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的焦距為4,其長軸長和短軸長之比為
3
:1.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)F為橢圓C的右焦點,T為直線x=t(t∈R,t≠2)上縱坐標(biāo)不為0的任意一點,過F作TF的垂線交橢圓C于點P,Q.
(。┤鬙T平分線段PQ(其中O為坐標(biāo)原點),求t的值;
(ⅱ)在(。┑臈l件下,當(dāng)
|TF|
|PQ|
最小時,求點T的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)Sn是等比數(shù)列{an}的前n項和,若a3=7,S3=21,則數(shù)列{an}的公比是( 。
A、-
1
2
B、1
C、
1
2
或1
D、-
1
2
或1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點M的坐標(biāo)(x,y)滿足不等式組
x≥0
y≥0
x+2y≤6
3x+y≤12
,則x-y的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

要得到函數(shù)f(x)=sin(2x+
6
)的圖象,只需將函數(shù)g(x)=sin(2x+
π
3
)的圖象( 。
A、向左平移
π
2
個單位長度
B、向右平移
π
2
個單位長度
C、向左平移
π
4
個單位長度
D、向右平移
π
4
個單位長度

查看答案和解析>>

同步練習(xí)冊答案