【題目】鄭州一中社團(tuán)為調(diào)查學(xué)生學(xué)習(xí)圍棋的情況,隨機(jī)抽取了100名學(xué)生進(jìn)行調(diào)查.根據(jù)調(diào)查結(jié)果繪制的學(xué)生日均學(xué)習(xí)圍棋時間的頻率分布直方圖:將日均學(xué)習(xí)圍棋時間不低于40分鐘的學(xué)生稱為“圍棋迷”.
(1)根據(jù)已知條件完成下面的2×2列聯(lián)表,并據(jù)此資料你是否認(rèn)為“圍棋迷”與性別有關(guān)?
非圍棋迷 | 圍棋迷 | 合計 | |
男 | |||
女 | 10 | 55 | |
合計 |
(2)將上述調(diào)查所得到的頻率視為概率.現(xiàn)在從該地區(qū)大量學(xué)生中,采用隨機(jī)抽樣方法每次抽取1名學(xué)生,抽取3次,記被抽取的3名學(xué)生中的“圍棋迷”人數(shù)為.若每次抽取的結(jié)果是相互獨立的,求的分布列,期望
附:,
0.05 | 0.01 | |
3.841 | 6.635 |
【答案】(1)沒有理由認(rèn)為“圍棋迷”與性別有關(guān);
(2)分布列見解析,.
【解析】
(1)由頻率分布直方圖可填寫列聯(lián)表,計算觀測值,比較臨界值即可得出結(jié)論;(2)由頻率分布直方圖計算頻率,將頻率視為概率,得出,根據(jù)獨立重復(fù)試驗概率公式計算對應(yīng)的概率,寫出的分布列,利用二項分布的期望公式計算數(shù)學(xué)期望.
(1)由頻率分布直方圖可知,在抽取的100人中,“圍棋迷”有25人,從而2×2列聯(lián)表如下:
非圍棋迷 | 圍棋迷 | 合計 | |
男 | 30 | 15 | 45 |
女 | 45 | 10 | 55 |
合計 | 75 | 25 | 100 |
將2×2列聯(lián)表中的數(shù)據(jù)代入公式計算,得:
,
因為,所以沒有理由認(rèn)為“圍棋迷”與性別有關(guān);
(2)由頻率分布直方圖知抽到“圍棋迷”的頻率為0.25,將頻率視為概率,即從觀眾中抽取一名“圍棋迷”的概率為.由題意,從而的分布列為
0 | 1 | 2 | 3 | |
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】繼共享單車之后,又一種新型的出行方式------“共享汽車”也開始亮相北上廣深等十余大中城市,一款叫“一度用車”的共享汽車在廣州提供的車型是“奇瑞eQ”,每次租車收費按行駛里程加用車時間,標(biāo)準(zhǔn)是“1元/公里+0.1元/分鐘”,李先生家離上班地點10公里,每天租用共享汽車上下班,由于堵車因素,每次路上開車花費的時間是一個隨機(jī)變量,根據(jù)一段時間統(tǒng)計40次路上開車花費時間在各時間段內(nèi)的情況如下:
時間(分鐘) | |||||
次數(shù) | 8 | 14 | 8 | 8 | 2 |
以各時間段發(fā)生的頻率視為概率,假設(shè)每次路上開車花費的時間視為用車時間,范圍為分鐘.
(Ⅰ)若李先生上.下班時租用一次共享汽車路上開車不超過45分鐘,便是所有可選擇的交通工具中的一次最優(yōu)選擇,設(shè)是4次使用共享汽車中最優(yōu)選擇的次數(shù),求的分布列和期望.
(Ⅱ)若李先生每天上下班使用共享汽車2次,一個月(以20天計算)平均用車費用大約是多少(同一時段,用該區(qū)間的中點值作代表).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=,g(x)=a
(1)當(dāng)a=3時,解不等式(關(guān)于x的)f(x)g(x)+3.
(2)若f(x)g(x)-1 對于任意x都成立,求a的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】大型綜藝節(jié)目《最強(qiáng)大腦》中,有一個游戲叫做盲擰魔方,就是玩家先觀察魔方狀態(tài)并進(jìn)行記憶,記住后蒙住眼睛快速還原魔方.根據(jù)調(diào)查顯示,是否喜歡盲擰魔方與性別有關(guān).為了驗證這個結(jié)論,某興趣小組隨機(jī)抽取了100名魔方愛好者進(jìn)行調(diào)查,得到的部分?jǐn)?shù)據(jù)如表所示:已知在全部100人中隨機(jī)抽取1人抽到喜歡盲擰的概率為.
喜歡盲擰 | 不喜歡盲擰 | 總計 | |
男 | 10 | ||
女 | 20 | ||
總計 | 100 |
表(1)
并邀請這100人中的喜歡盲擰的人參加盲擰三階魔方比賽,其完成時間的頻率分布如表所示:
完成時間(分鐘) | [0,10) | [10,20) | [20,30) | [30,40] |
頻率 | 0.2 | 0.4 | 0.3 | 0.1 |
表(2)
(Ⅰ)將表(1)補充完整,并判斷能否在犯錯誤的概率不超過0.001的前提下認(rèn)為是否喜歡盲擰與性別有關(guān)?
(Ⅱ)現(xiàn)從表(2)中完成時間在[30,40] 內(nèi)的人中任意抽取2人對他們的盲擰情況進(jìn)行視頻記錄,記完成時間在[30,40]內(nèi)的甲、乙、丙3人中恰有一人被抽到為事件A,求事件A發(fā)生的概率.
(參考公式:,其中)
P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C:x2+y2﹣4x+3=0,過原點的直線l與圓C有公共點.
(1)求直線l斜率k的取值范圍;
(2)已知O為坐標(biāo)原點,點P為圓C上的任意一點,求線段OP的中點M的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知m、n是不重合的直線,α、β是不重合的平面,有下列命題:①若mα,n∥α,則m∥n;②若m∥α,m∥β,則α∥β;③若α∩β=n,m∥n,則m∥α且m∥β;④若m⊥α,m⊥β,則α∥β.其中真命題的個數(shù)是( )
A. 0B. 1C. 2D. 3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某次詩詞大會決賽前,甲、乙、丙丁四位選手有機(jī)會問鼎冠軍,三名詩詞愛好者依據(jù)選手在之前比賽中的表現(xiàn),結(jié)合自己的判斷,對本場比賽的冠軍進(jìn)行了如下猜測:猜測冠軍是乙或;猜測冠軍一定不是丙和。猜測冠軍是甲或乙。比賽結(jié)束后發(fā)現(xiàn),三個人中只有一個人的猜測是正確的,則冠軍是( )
A. 甲B. 乙C. 丙D. 丁
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(多選題)對任意實數(shù),,,下列命題中正確的是( )
A.“”是“”的充要條件
B.“是無理數(shù)”是“是無理數(shù)”的充要條件
C.“”是“”的充分條件
D.“”是“”的必要條件
E.“”是“”的必要條件
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com