【題目】直線y=x與函數(shù)的圖象恰有三個公共點,則實數(shù)m的取值范圍是
【答案】﹣1≤m<2
【解析】根據(jù)題意,直線y=x與射線y=2(x>m)有一個交點A(2,2),
并且與拋物線y=x2+4x+2在(﹣∞,m]上的部分有兩個交點B、C
由 , 聯(lián)解得B(﹣1,﹣1),C(﹣2,﹣2)
∵拋物線y=x2+4x+2在(﹣∞,m]上的部分必須包含B、C兩點,
且點A(2,2)一定在射線y=2(x>m)上,才能使y=f(x)圖象與y=x有3個交點
∴實數(shù)m的取值范圍是﹣1≤m<2
故答案為:﹣1≤m<2
根據(jù)題意,求出直線y=x與射線y=2(x>m)、拋物線y=x2+4x+2在(﹣∞,m]上的部分的三個交點A、B、C,且三個交點必須都在y=f(x)圖象上,由此不難得到實數(shù)m的取值范圍.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項和為Sn , a1=1,且nan+1=2Sn(n∈N*),數(shù)列{bn}滿足b1= , b2= , 對任意n∈N* , 都有bn+12=bnbn+2 .
求數(shù)列{an}、{bn}的通項公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于函數(shù)f(x)=(2x-x2)ex
①(-,)是f(x)的單調(diào)遞減區(qū)間;
②f(-)是f(x)的極小值,f()是f(x)的極大值;
③f(x)沒有最大值,也沒有最小值;
④f(x)有最大值,沒有最小值.
其中判斷正確的是_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C對應(yīng)的邊分別是a,b,c,已知cos2A﹣3cos(B+C)=1.
(1)求角A的大;
(2)若△ABC的面積S=5,b=5,求sinBsinC的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x﹣a|,其中a>1
(1)當(dāng)a=2時,求不等式f(x)≥4﹣|x﹣4|的解集;
(2)已知關(guān)于x的不等式|f(2x+a)﹣2f(x)|≤2的解集{x|1≤x≤2},求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知三棱柱BCF﹣ADE的側(cè)面CFED與ABFE都是邊長為1的正方形,M、N兩點分別在AF和CE上,且AM=EN.
(1)求證:平面ABCD⊥平面ADE;
(2)求證:MN∥平面BCF;
(3)若點N為EC的中點,點P為EF上的動點,試求PA+PN的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在下列向量組中,可以把向量=(3,2)表示出來的是( 。
A.=(0,0), =(1,2)
B.=(﹣1,2),=(5,﹣2)
C.=(3,5), =(6,10)
D.=(2,﹣3), =(﹣2,3)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知p:指數(shù)函數(shù)f(x)=(2a-6)x在R上是單調(diào)減函數(shù);q:關(guān)于x的方程x2-3ax+2a2+1=0的兩根均大于3,若p或q為真,p且q為假,求實數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com