19.在平面直角坐標(biāo)系xoy中,已知直線l:ax+y+2=0和點(diǎn)A(-3,0),若直線l上存在點(diǎn)M滿足MA=2MO,則實(shí)數(shù)a的取值范圍為a≤0,或a≥$\frac{4}{3}$.

分析 取M(x,-2-ax),直線l上存在點(diǎn)M滿足MA=2MO,可得$\sqrt{(x+3)^{2}+(-2-ax)^{2}}$=2$\sqrt{{x}^{2}+(-2-ax)^{2}}$,化為:(a2+1)x2+(4a-2)x+1=0,此方程有實(shí)數(shù)根,可得△≥0,解出即可得出.

解答 解:取M(x,-2-ax),
∵直線l上存在點(diǎn)M滿足MA=2MO,
∴$\sqrt{(x+3)^{2}+(-2-ax)^{2}}$=2$\sqrt{{x}^{2}+(-2-ax)^{2}}$,
化為:(a2+1)x2+(4a-2)x+1=0,此方程有實(shí)數(shù)根,
∴△=(4a-2)2-4(a2+1)≥0,
化為3a2-4a≥0,
解得a≤0,或a≥$\frac{4}{3}$.
故答案為:a≤0,或a≥$\frac{4}{3}$.

點(diǎn)評(píng) 本題考查了兩點(diǎn)之間的距離公式、一元二次方程的實(shí)數(shù)解與判別式的關(guān)系、不等式的解法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.“a<0”是函數(shù)“函數(shù)f(x)=|x-a|+|x|在區(qū)間[0,+∞)上為增函數(shù)”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.函數(shù)f(x)=ln(x2-2x-3)的單調(diào)遞增區(qū)間是(3,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在等差數(shù)列{an}中,a2=4,a4+a7=15.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)${b_n}={2^{{a_n}-2}}$,求b1+b2+b3+…+b10的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.過點(diǎn)P(0,1),且與直線2x+3y-4=0垂直的直線方程為3x-2y+2=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.某市為鼓勵(lì)居民節(jié)約用水,擬實(shí)行階梯水價(jià),每人用水量中不超過w 立方米按2 元/立方米收費(fèi),超出w 立方米但不高于w+2 的部分按4 元/立方米收費(fèi),超出w+2 的部分按8 元/立方米收費(fèi),從該市隨機(jī)調(diào)查了10000 位居民,獲得了他們某月的用水量數(shù)據(jù),整理得到如圖所示頻率分布直方圖:
(1)如果w 為整數(shù),那么根據(jù)此次調(diào)查,為使40%以上居民在該月的用水價(jià)格為2元/立方米,w 至少定為多少?
(2)假設(shè)同組中的每個(gè)數(shù)據(jù)用該組區(qū)間的右端點(diǎn)值代替,當(dāng)w=2 時(shí),估計(jì)該市居民該月的人均水費(fèi).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)$f(x)=\frac{x-1}{x}-lnx$
(1)求f(x)的單調(diào)區(qū)間;
(2)求函數(shù)f(x)在$[{\frac{1}{e},e}]$上的最大值和最小值;
(3)求證:$ln\frac{e^2}{x}≤\frac{1+x}{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.在等差數(shù)列{an}中,若a1+a5+a9=$\frac{π}{2}$,則sin(a4+a6)=( 。
A.$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知f(x)=cosx(msinx-cosx)+sin2(π+x)(m>0)的最小值為-2.
(Ⅰ)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且bcosA=2ccosA-acosB,求f(C)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案