從1、2、3、4中任取兩個(gè)不同的數(shù)字構(gòu)成一個(gè)兩位數(shù),則這個(gè)兩位數(shù)大于20的概率為
 
考點(diǎn):幾何概型
專題:概率與統(tǒng)計(jì)
分析:本題是一個(gè)等可能事件的概率,試驗(yàn)發(fā)生所包含的事件是從4個(gè)數(shù)字中選兩個(gè)數(shù)字進(jìn)行排列,共有A42種結(jié)果,兩位數(shù)大于20的為:21,23,24,31,32,34,41,42,43共9種結(jié)果.得到概率.
解答: 解:由題意知本題是一個(gè)等可能事件的概率,
試驗(yàn)發(fā)生所包含的事件是從4個(gè)數(shù)字中選兩個(gè)數(shù)字進(jìn)行排列,共有A42=12種結(jié)果,
兩位數(shù)大于20的為:21,23,24,31,32,34,41,42,43共9種結(jié)果,
因此概率為
9
12
=
3
4

故答案為:
3
4
點(diǎn)評:本題考查等可能事件的概率,解題的關(guān)鍵是理解事件兩位數(shù)大于20確定此事件的計(jì)數(shù)方法,本題概率基本公式考查題,考查分析判斷的能力,本題是一個(gè)基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

過點(diǎn)P(3,1)向圓x2+y2-2x-2y+1=0作一條切線,切點(diǎn)為A,則切線段PA的長為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log
1
2
[x2-2(2a-1)x+8]
,a∈R.
(1)若f(x)在[a,+∞)上為減函數(shù),求a的取值范圍;
(2)若關(guān)于x的方程f(x)=log
1
2
(x+3)-1在(1,3)內(nèi)有兩不等實(shí)根,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

lg5+2lg
2
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列{an}滿足:a4+a6+a8+a10+a12=20,則a9-
1
2
a10
=(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}中,a5+a7+a9=21,則a7的值是( 。
A、7B、9C、11D、13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-x2+ax-b.若a,b都是從區(qū)間[0,4]任取的一個(gè)數(shù),則f(1)<0成立的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若圓x2+y2-2kx+2y+2=0(k>0)與兩坐標(biāo)軸無公共點(diǎn),那么實(shí)數(shù)k的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,四棱錐P-ABCD中,底面ABCD為正方形,PD⊥平面ABCD,PD=AB=2,點(diǎn)E,F(xiàn),G分別為PC,PD,BC的中點(diǎn).
(Ⅰ)求證:PA∥平面EFG;
(Ⅱ)求三棱錐P-EFG的體積;
(Ⅲ)求四棱錐P-ABCD被平面EFG所截得到的兩部分體積之比.

查看答案和解析>>

同步練習(xí)冊答案