11.某城市關(guān)系要好的A,B,C,D四個家庭各有兩個小孩共8人,分乘甲、乙兩輛汽車出去游玩,每車限坐4名(乘同一輛車的4名小孩不考慮位置),其中A戶家庭的孿生姐妹需乘同一輛車,則乘坐甲車的4名小孩恰有2名來自于同一個家庭的乘坐方式共有( 。
A.18種B.24種C.36種D.48種

分析 根據(jù)題意,分2種情況討論:①、A戶家庭的孿生姐妹在甲車上,甲車上剩下兩個要來自不同的家庭,②、A戶家庭的孿生姐妹不在甲車上,每種情況下分析乘坐人員的情況,由排列、組合數(shù)公式計算可得其乘坐方式的數(shù)目,由分類計數(shù)原理計算可得答案.

解答 解:根據(jù)題意,分2種情況討論:
①、A戶家庭的孿生姐妹在甲車上,甲車上剩下兩個要來自不同的家庭,
可以在剩下的三個家庭中任選2個,再從每個家庭的2個小孩中任選一個,來乘坐甲車,
有C32×C21×C21=12種乘坐方式;
②、A戶家庭的孿生姐妹不在甲車上,
需要在剩下的三個家庭中任選1個,讓其2個小孩都在甲車上,
對于剩余的2個家庭,從每個家庭的2個小孩中任選一個,來乘坐甲車,
有C31×C21×C21=12種乘坐方式;
則共有12+12=24種乘坐方式;
故選:B.

點評 本題考查排列、組合的應(yīng)用,涉及分類計數(shù)原理的應(yīng)用,關(guān)鍵是依據(jù)題意,分析“乘坐甲車的4名小孩恰有2名來自于同一個家庭”的可能情況.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,已知側(cè)棱垂直于底面的四棱柱ABCD-A1B1C1D1中,AB=AD=1,CB=CD=$\sqrt{3}$,∠BCD=60°,CC1=$\sqrt{3}$.
(1)若E是線段A1A上的點且滿足A1E=3AE,求證:平面EBD⊥平面C1BD;
(2)求二面角C-C1D-B的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.己知0<a<b<l<c,則( 。
A.ab>aaB.ca>cbC.logac>logbcD.logbc>logb a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知O為直角坐標系的坐標原點,雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(b>a>0)$上有一點$P(\sqrt{5},m)$(m>0),點P在x軸上的射影恰好是雙曲線C的右焦點,過點P作雙曲線C兩條漸近線的平行線,與兩條漸近線的交點分別為A,B,若平行四邊形PAOB的面積為1,則雙曲線的標準方程是( 。
A.${x^2}-\frac{y^2}{4}=1$B.$\frac{x^2}{2}-\frac{y^2}{3}=1$C.${x^2}-\frac{y^2}{6}=1$D.$\frac{x^2}{{\frac{3}{2}}}-\frac{y^2}{{\frac{7}{2}}}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果是( 。
A.7B.8C.9D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知定義在R上的偶函數(shù)f(x),滿足f(x+4)=f(x),且x∈[0,2]時,f(x)=sinπx+2|sinπx|,則方程f(x)-|lgx|=0在區(qū)間[0,10]上根的個數(shù)是( 。
A.17B.18C.19D.20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)f(x)=|lnx|,$g(x)=\left\{\begin{array}{l}0\\|{{x^2}-4}|-2\end{array}\right.$$\begin{array}{l}({0<x≤1})\\({x>1})\end{array}$則方程|f(x)+g(x)|=1實根的個數(shù)為( 。
A.2個B.4個C.6個D.8個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知函數(shù) f(x)=x+$\frac{2b}{x}$+a,x∈[a,+∞),其中a>0,b∈R,記m(a,b)為 f(x)的最小值,則當m(a,b)=2時,b的取值范圍為(  )
A.b>$\frac{1}{3}$B.b<$\frac{1}{3}$C.b>$\frac{1}{2}$D.b<$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知平面向量$\overrightarrow a=(\;3,\;1\;),\;\overrightarrow b=(\;t,\;-3\;)$,且$\overrightarrow a⊥\overrightarrow b$,則t=(  )
A.-1B.1C.3D.-3

查看答案和解析>>

同步練習(xí)冊答案