【題目】從某工廠生產(chǎn)線上隨機(jī)抽取16件零件,測(cè)量其內(nèi)徑數(shù)據(jù)從小到大依次排列如下:1.12,1.25,1.21,1.23,1.25,1.25,1.26,1.30,1.30,1.32,1.34,1.35,1.37,1.38,1.41,1.42.據(jù)此可估計(jì)該生產(chǎn)線上大約有25%的零件內(nèi)徑小于等于___________,大約有30%的零件內(nèi)徑大于___________mm(單位:mm.

【答案】

【解析】

,所給數(shù)據(jù)是由小到大排列,從左向右查出個(gè)數(shù)據(jù),據(jù)此可估計(jì)該生產(chǎn)線上大約有的零件內(nèi)徑小于等于.同理,,在數(shù)據(jù)中從右向左查出個(gè)數(shù)據(jù),則大約有的零件內(nèi)徑大于.

從某工廠生產(chǎn)線上隨機(jī)抽取16件零件測(cè)量其內(nèi)徑數(shù)據(jù)從小到大依次排列如下:

所給數(shù)據(jù)是由小到大排列,從左向右查出個(gè)數(shù)據(jù),個(gè)數(shù)據(jù)為

據(jù)此可估計(jì)該生產(chǎn)線上大約有的零件內(nèi)徑小于等于.

在數(shù)據(jù)中從右向左查出5個(gè)數(shù)據(jù),則大約有的零件內(nèi)徑大于.

故答案為:,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)的定義域?yàn)?/span>,且對(duì)任意,,且當(dāng)時(shí).

1)證明:是奇函數(shù);

2)證明:上是減函數(shù);

3)求在區(qū)間上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示的幾何體QPABCD為一簡(jiǎn)單組合體,在底面ABCD中,∠DAB=60°,ADDC,ABBCQD⊥平面ABCD,PAQDPA=1,ADABQD=2.

(1)求證:平面PAB⊥平面QBC;

(2)求該組合體QPABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的短軸長(zhǎng)為2,且橢圓的離心率為.

(1)求橢圓的方程;

(2)過(guò)橢圓的上焦點(diǎn)作相互垂直的弦,,求為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中,是邊長(zhǎng)等于2的等邊三角形,四邊形是菱形,,,是棱上的點(diǎn),.,分別是,的中點(diǎn).

(1)求證:平面

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù), 為函數(shù)的極值點(diǎn).

(1)證明:當(dāng)時(shí),

(2)對(duì)于任意,都存在,使得,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平面PAC⊥平面ABC,點(diǎn)E、F、O分別為線段PA、PB、AC的中點(diǎn),點(diǎn)G是線段CO的中點(diǎn),ABBCAC4,PAPC2.求證:

1PA⊥平面EBO;

2FG∥平面EBO

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2019年4月23日“世界讀書日”來(lái)臨之際,某校為了了解中學(xué)生課外閱讀情況,隨機(jī)抽取了100名學(xué)生,并獲得了他們一周課外閱讀時(shí)間(單位:小時(shí))的數(shù)據(jù),按閱讀時(shí)間分組:第一組[0,5), 第二組[5,10),第三組[10,15),第四組[15,20),第五組[20,25],繪制了頻率分布直方圖如下圖所示。已知第三組的頻數(shù)是第五組頻數(shù)的3倍。

(1)求的值,并根據(jù)頻率分布直方圖估計(jì)該校學(xué)生一周課外閱讀時(shí)間的平均值;

(2)現(xiàn)從第三、四、五這3組中用分層抽樣的方法抽取6人參加!爸腥A詩(shī)詞比賽”。經(jīng)過(guò)比賽后,從這6人中隨機(jī)挑選2人組成該校代表隊(duì),求這2人來(lái)自不同組別的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形是正方形,平面,,, 分別為,的中點(diǎn).

1求證:平面;

2求平面與平面所成銳二面角的大小.

查看答案和解析>>

同步練習(xí)冊(cè)答案