某高校共有學(xué)生15 000人,其中男生10 500人,女生4 500人,為調(diào)查該校學(xué)生每周平均體育運動的情況,采用分層抽樣的方法,收集300位學(xué)生每周平均體育運動時間的樣本數(shù)據(jù)(單位:小時).
(1)應(yīng)收集多少位女生的樣本數(shù)據(jù)?
(2)根據(jù)這300個樣本數(shù)據(jù),得到學(xué)生每周平均體育運動時間的頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)的分組區(qū)間為:[0,2],(2,4], (4,6], (6,8], (8,10], (10,12],估計該校學(xué)生每周平均體育運動時間超過4小時的概率;
(3)在樣本數(shù)據(jù)中,有60位女生的每周平均體育運動時間超過4小時,請完成每周平均體育運動時間與性別列聯(lián)表,并判斷是否有95%的把握認(rèn)為“該校學(xué)生的每周平均體育運動時間與性別有關(guān)”.
附:
P(K2≥k0) | 0.10 | 0.05 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 6.635 | 7.879 |
(1) 90;(2) 0.75;(3) 有.
解析試題分析:(1)由分層抽樣方法可知每層應(yīng)抽取的比例相同且為,所以女生應(yīng)抽取人數(shù)就等于女生總?cè)藬?shù)4 500 乘以抽取比例;(2) 該校學(xué)生每周平均體育運動時間超過4小時的概率等于1減去[0,2],(2,4]矩形方塊的高度之和乘以組距2; (3)首先應(yīng)計算出在樣本數(shù)據(jù)的300人中,每周平均體育運動時間超過4小時的男生人數(shù)和女生人數(shù),列出列聯(lián)表,然后根據(jù)公式計算出的觀測值,如果的觀測值大于3.841,則就有有95%的把握認(rèn)為“該校學(xué)生的每周平均體育運動時間與性別有關(guān)”;否則就沒有95%的把握認(rèn)為“該校學(xué)生的每周平均體育運動時間與性別有關(guān)”.
試題解析:(1) ,所以應(yīng)收集90位女生的樣本數(shù)據(jù)。
(2)由頻率分布直方圖得1-2×(0.100+0.025)=0.75,所以該校學(xué)生每周平均體育運動時間超過4小時的概率的估計值為0.75。
(3)由(2)知,300位學(xué)生中有300×0.75=225人的每周平均體育運動時間超過4小時,75人的每周平均體育運動時間不超過4小時,又因為樣本數(shù)據(jù)中有210份是關(guān)于男生的,90份是關(guān)于女生的,所以每周平均體育運動時間與性別列聯(lián)表如下:
每周平均體育運動時間與性別列聯(lián)表。 男生 女生 總計 每周平均體育運動時間
不超過4小時45 30 75 每周平均體育運動時間
超過4小時165 60 225 總計 210 90 300
結(jié)合列聯(lián)表可算得.所以,有95%的把握認(rèn)為“該校學(xué)生的每周平均體育運動時間與性別有關(guān)”.
考點:1.分層抽樣;2. 頻率分布直方圖;3.獨立性檢驗.
科目:高中數(shù)學(xué) 來源: 題型:解答題
某高校共有15000人,其中男生10500人,女生4500人,為調(diào)查該校學(xué)生每周平均體育運動時間的情況,采用分層抽樣的方法,收集300位學(xué)生每周平均體育運動時間的樣本數(shù)據(jù)(單位:小時)
(1)應(yīng)收集多少位女生樣本數(shù)據(jù)?
(2)根據(jù)這300個樣本數(shù)據(jù),得到學(xué)生每周平均體育運動時間的頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為:.估計該校學(xué)生每周平均體育運動時間超過4個小時的概率.
(3)在樣本數(shù)據(jù)中,有60位女生的每周平均體育運動時間超過4個小時.請完成每周平均體育運動時間與性別的列聯(lián)表,并判斷是否有的把握認(rèn)為“該校學(xué)生的每周平均體育運動時間與性別有關(guān)”.
P(K2≥k0) | 0.10 | 0.05 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
為了解某班學(xué)生喜愛打籃球是否與性別有關(guān),對本班50人進行了問卷調(diào)查得到了如下的列聯(lián)表:
| 喜愛打籃球 | 不喜愛打籃球 | 合計 |
男生 | 20 | 5 | 25 |
女生 | 10 | 15 | 25 |
合計 | 30 | 20 | 50 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
隨機抽取某中學(xué)甲班10名同學(xué),他們的身高(單位:cm)數(shù)據(jù)是
;乙班10名同學(xué),他們的身高(單位:cm)數(shù)據(jù)是
(1)畫出甲、乙兩班的莖葉圖,并說明莖葉圖有什么優(yōu)點和缺點?
(2)根據(jù)莖葉圖判斷哪個班的平均身高較高(不必計算).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某工廠為了對新研發(fā)的一種產(chǎn)品進行合理定價,將該產(chǎn)品按事先擬定的價格進行試銷,得到如下數(shù)據(jù):
由散點圖可知,銷售量與價格之間有較好的線性相關(guān)關(guān)系,其線性回歸直線方程是;
(1)求的值;
(2)預(yù)計在今后的銷售中,銷量與單價仍然服從線性回歸直線方程中的關(guān)系,且該產(chǎn)品的成本是每件4元,為使工廠獲得最大利潤,該產(chǎn)品的單價應(yīng)定為多少元?(利潤=銷售收入一成本)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知某單位有50名職工,現(xiàn)要從中抽取10名職工,將全體職工隨機按1~50編號,并按編號順序平均分成10組,按各組內(nèi)抽取的編號依次增加5進行系統(tǒng)抽樣.
(1)若第5組抽出的號碼為22,寫出所有被抽出職工的號碼;
(2)分別統(tǒng)計這10名職工的體重(單位:公斤),獲得體重數(shù)據(jù)的莖葉圖如圖所示,求該樣本的方差;
(3)在(2)的條件下,從這10名職工中隨機抽取兩名體重不輕于73公斤(≥73公斤)的職工,求體重為76公斤的職工被抽取到的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某化肥廠甲、乙兩個車間包裝肥料,在自動包裝傳送帶上每隔30 min抽取一包產(chǎn)品,稱其重量,分別記錄抽查數(shù)據(jù)如下:
甲:102,101,99,98,103,98,99;
乙:110,115,90,85,75,115,110.
(1)這種抽樣方法是哪一種?
(2)將這兩組數(shù)據(jù)用莖葉圖表示;
(3)將兩組數(shù)據(jù)比較,說明哪個車間的產(chǎn)品較穩(wěn)定.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
小區(qū)統(tǒng)計部門隨機抽查了區(qū)內(nèi)名網(wǎng)友4月1日這天的網(wǎng)購情況,得到如下數(shù)據(jù)統(tǒng)計表(圖(1)).網(wǎng)購金額超過千元的顧客被定義為“網(wǎng)購紅人”,網(wǎng)購金額不超過千元的顧客被定義為“非網(wǎng)購紅人”.已知“非網(wǎng)購紅人”與“網(wǎng)購紅人”人數(shù)比恰為.
(1)確定的值,并補全頻率分布直方圖(圖(2)).
(2)為進一步了解這名網(wǎng)友的購物體驗,從“非網(wǎng)購紅人”和“網(wǎng)購紅人”中用分層抽樣的方法確定人,若需從這人中隨機選取人進行問卷調(diào)查,設(shè)為選取的人中“網(wǎng)購紅人”的人數(shù),求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
某市高三數(shù)學(xué)抽樣考試中,對90分以上
(含90分)的成績進行統(tǒng)計,其頻率分布圖
如圖所示,若130—140分?jǐn)?shù)段的人數(shù)為90人,
則90—100分?jǐn)?shù)段的人數(shù)為_______
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com