16.一個(gè)幾何體的三視圖如圖所示,則此幾何體的體積是80;表面積是80+8$\sqrt{13}$.

分析 由三視圖可知該幾何體為上部是一四棱錐,高為3,下部為正方體,邊長(zhǎng)為4的組合體.分別求得體積、側(cè)面積再相加.

解答 解:由三視圖可知該幾何體為上部是一四棱錐,下部為正方體的組合體.四棱錐的高h(yuǎn)1=3,正方體棱長(zhǎng)為4
V正方體=Sh2=42×4=64
V四棱錐=$\frac{1}{3}$Sh1=$\frac{1}{3}×{4}^{2}×3$=16
所以V=64+16=80
S正方體=42×5=80,S四棱錐側(cè)=4×$\frac{1}{2}×4×\sqrt{9+4}$=8$\sqrt{13}$,所以S=80+8$\sqrt{13}$
故答案為:80;80+8$\sqrt{13}$.

點(diǎn)評(píng) 本題考查三視圖求幾何體的體積、表面積,考查計(jì)算能力,空間想象能力,三視圖復(fù)原幾何體是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.網(wǎng)格紙的各小格都是邊長(zhǎng)為1的正方形,圖中粗實(shí)線畫出的是一個(gè)幾何體的三視圖,其中正視圖是正三角形,則該幾何體的外接球表面積為( 。
A.$\frac{π}{3}$B.$\frac{2π}{3}$C.$\frac{4π}{3}$D.$\frac{16π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x^2},x≥0\\-{x^2},x<0\end{array}$,若f(a2)<f(2-a),則實(shí)數(shù)a的取值范圍是(-2,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x+2017,x>0}\\{-f(x+2),x≤0}\end{array}\right.$,則f(-2016)=-2018.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知三棱錐的三視圖的正視圖是等腰三角形,俯視圖是邊長(zhǎng)為$\sqrt{3}$的等邊三角形,側(cè)視圖是等腰直角三角形,則三棱錐的四個(gè)面中面積的最大值為為$\frac{3\sqrt{6}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.函數(shù)f(x)定義在(0,$\frac{π}{2}$)上,f′(x)是它的導(dǎo)函數(shù),且tanx•f(x)>f′(x)在定義域內(nèi)恒成立,則( 。
A.$\sqrt{2}$f($\frac{π}{4}$)<f($\frac{π}{3}$)B.$\sqrt{3}$f($\frac{π}{6}$)<f($\frac{π}{3}$)C.cos1•f(1)>$\frac{\sqrt{3}}{2}$f($\frac{π}{6}$)D.$\sqrt{2}$f($\frac{π}{4}$)<$\sqrt{3}$f($\frac{π}{6}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知f(x)=$\left\{{\begin{array}{l}{ln(x+1)}&{(x≥0)}\\{{e^x}-1}&{(x<0)}\end{array}}$,若函數(shù)y=f(x)-kx恒有一個(gè)零點(diǎn),則k的取值范圍為( 。
A.k≤0B.k≤0或k≥1C.k≤0或k≥eD.k≤0或k≥$\frac{1}{e}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知各項(xiàng)均為整數(shù)的數(shù)列{an}滿足an2≤1,1≤a12+a22+…+an2≤m,m,n∈N*
(1)若m=1,n=2,寫出所有滿足條件的數(shù)列{an};
(2)設(shè)滿足條件的{an}的個(gè)數(shù)為f(n,m).
①求f(2,2)和f(2016,2016);
②若f(m+1,m)>2016,試求m的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.設(shè)數(shù)列{an}是單調(diào)遞減的等差數(shù)列,前三項(xiàng)的和為12,前三項(xiàng)的積為28,則a1=( 。
A.1B.4C.7D.1或7

查看答案和解析>>

同步練習(xí)冊(cè)答案