【題目】已知在四棱錐中,底面是矩形,且,,平面、分別是線段、的中點(diǎn)

1證明:

2在線段上是否存在點(diǎn),使得平面,若存在,確定點(diǎn)的位置;若不存在,說明理由

3與平面所成的角為,求二面角的余弦值

【答案】1證明見解析;2證明見解析;3

【解析】

試題分析:1利用已知的線面垂直關(guān)系建立空間直角坐標(biāo)系,準(zhǔn)確寫出相關(guān)點(diǎn)的坐標(biāo),從而將幾何證明轉(zhuǎn)化為向量運(yùn)算其中靈活建系是解題的關(guān)鍵.(2證明證線線垂直,只需要證明直線的方向向量垂直;3把向量夾角的余弦值轉(zhuǎn)化為兩平面法向量夾角的余弦值;4空間向量將空間位置關(guān)系轉(zhuǎn)化為向量運(yùn)算,應(yīng)用的核心是要充分認(rèn)識(shí)形體特征,建立恰當(dāng)?shù)淖鴺?biāo)系,實(shí)施幾何問題代數(shù)化同時(shí)注意兩點(diǎn):一是正確寫出點(diǎn)、向量的坐標(biāo),準(zhǔn)確運(yùn)算;二是空間位置關(guān)系中判定定理與性質(zhì)定理?xiàng)l件要完備

試題解析:解法一:1 平面,,,建立如圖所示的空間直角坐標(biāo)系,則2分

不妨令,,

4分

2設(shè)平面的法向量為,由,得,令,

得: 6分

設(shè)點(diǎn)坐標(biāo)為,則,要使平面,只需,即,得,從而滿足的點(diǎn)即為所求8分

3,是平面的法向量,易得, 9分

平面,與平面所成的角,

,,平面的法向量為 10分

,

故所求二面角的余弦值為12分

解法二:1證明:連接,則,,

, , 2分

, ,又,

4分

2過點(diǎn)于點(diǎn),則平面,且有 5分

再過點(diǎn)于點(diǎn),則平面 平面平面 7分 平面從而滿足的點(diǎn)即為所求8分

3平面,與平面所成的角,且

9分

的中點(diǎn),則,平面

在平面中,過,連接,則

即為二面角的平面角 10分

, ,且

,, 12分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的右焦點(diǎn)為,點(diǎn)在橢圓上.

1求橢圓的方程;

2過點(diǎn)的直線,交橢圓兩點(diǎn),點(diǎn)在橢圓上,坐標(biāo)原點(diǎn)恰為的重心,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了普及環(huán)保知識(shí),增強(qiáng)環(huán)保意識(shí),某校從理科甲班抽取60人,從文科乙班抽取50人參加環(huán)保知識(shí)測(cè)試.

優(yōu)秀人數(shù)

非優(yōu)秀人數(shù)

總計(jì)

甲班

乙班

30

總計(jì)

60

(Ⅰ)根據(jù)題目完成列聯(lián)表,并據(jù)此判斷是否有的把握認(rèn)為環(huán)保知識(shí)成績(jī)優(yōu)秀與學(xué)生的文理分類有關(guān).

(Ⅱ)現(xiàn)已知, , 三人獲得優(yōu)秀的概率分別為, ,設(shè)隨機(jī)變量表示 , 三人中獲得優(yōu)秀的人數(shù),求的分布列及期望

附: ,

0.100

0.050

0.025

0.010

0.005

2.706

3.841

5.024

6.635

7.879

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

(1)若直線是函數(shù)圖象的一條切線,求實(shí)數(shù)的值;

(2)若函數(shù)上的最大值為為自然對(duì)數(shù)的底數(shù)),求實(shí)數(shù)的值;

(3)若關(guān)于的方程有且僅有唯一的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列幾個(gè)命題
①奇函數(shù)的圖象一定通過原點(diǎn)
②函數(shù)y= 是偶函數(shù),但不是奇函數(shù)
③函數(shù)f(x)=ax1+3的圖象一定過定點(diǎn)P,則P點(diǎn)的坐標(biāo)是(1,4)
④若f(x+1)為偶函數(shù),則有f(x+1)=f(﹣x﹣1)
⑤若函數(shù)f(x)= 在R上的增函數(shù),則實(shí)數(shù)a的取值范圍為[4,8)
其中正確的命題序號(hào)為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形中, , 為邊的中點(diǎn),將沿直線翻轉(zhuǎn)成.若為線段的中點(diǎn),則在翻折過程中:

是定值;②點(diǎn)在某個(gè)球面上運(yùn)動(dòng);

③存在某個(gè)位置,使;④存在某個(gè)位置,使平面.

其中正確的命題是_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某科研小組研究發(fā)現(xiàn):一棵水果樹的產(chǎn)量(單位:百千克)與肥料費(fèi)用(單位:百元)滿足如下關(guān)系: .此外,還需要投入其它成本(如施肥的人工費(fèi)等)百元.已知這種水果的市場(chǎng)售價(jià)為16元/千克(即16百元/百千克),且市場(chǎng)需求始終供不應(yīng)求.記該棵水果樹獲得的利潤(rùn)為(單位:百元).

(1)求的函數(shù)關(guān)系式;

當(dāng)投入的肥料費(fèi)用為多少時(shí),該水果樹獲得的利潤(rùn)最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形都是邊長(zhǎng)為的正方形,點(diǎn)的中點(diǎn), 平面.

(1)求證 平面

(2)求證:平面平面;

(3)求平面與平面所成銳二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知?jiǎng)狱c(diǎn) P 與定點(diǎn)的距離和它到定直線 x 4 的距離的比是1: 2 ,記動(dòng)點(diǎn) P 的軌跡為曲線 E.

(1)求曲線 E 的方程;

(2)設(shè) A 是曲線 E 上的一個(gè)點(diǎn),直線 AF 交曲線 E 于另一點(diǎn) B,以 AB 為邊作一個(gè)平行四邊形,頂點(diǎn) A、B、C、D 都在軌跡 E 上,判斷平行四邊形 ABCD 能否為菱形,并說明理由;

(3)當(dāng)平行四邊形 ABCD 的面積取到最大值時(shí),判斷它的形狀,并求出其最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案