已知橢圓的離心率為

軸被拋物線截得的線段長(zhǎng)等于的長(zhǎng)半軸長(zhǎng).
(1)求的方程;
(2)設(shè)軸的交點(diǎn)為,過(guò)坐標(biāo)原點(diǎn)的直線
相交于兩點(diǎn),直線分別與相交于.   
①證明:為定值;
②記的面積為,試把表示成的函數(shù),并求的最大值.

(1)
(2)利用直線與拋物線以及直線于橢圓聯(lián)立方程組來(lái)求解向量的坐標(biāo),利用數(shù)量積為零來(lái)證明垂直。當(dāng),即時(shí),

解析試題分析:解:(1)由已知,,      ①           
中,令,得
由①②得,
                           
(2)由
設(shè),則             

  
 
(3)設(shè)上,
,,直線方程為:代入, 得,
,同理

由(2)知,,
,
時(shí),為增函數(shù),,
當(dāng),即時(shí),
考點(diǎn):直線與拋物線,橢圓的位置關(guān)系
點(diǎn)評(píng):解決的關(guān)鍵是利用拋物線的性質(zhì)和橢圓的性質(zhì)得到方程的求解,以及聯(lián)立方程組來(lái)得到坐標(biāo),結(jié)合向量的數(shù)量積為零證明垂直,屬于基礎(chǔ)題。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

極坐標(biāo)系與直角坐標(biāo)系有相同的長(zhǎng)度單位,以原點(diǎn)為極點(diǎn),以正半軸為極軸,已知曲線的極坐標(biāo)方程為,曲線的參數(shù)方程是為參數(shù),,射線與曲線交于極點(diǎn)外的三點(diǎn)
(Ⅰ)求證:
(Ⅱ)當(dāng)時(shí),兩點(diǎn)在曲線上,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓C:的兩個(gè)焦點(diǎn)為F1、F2,點(diǎn)P在橢圓C上,且|PF1|=,
|PF2|= , PF1⊥F1F2.        
(1)求橢圓C的方程;(6分)
(2)若直線L過(guò)圓x2+y2+4x-2y=0的圓心M交橢圓于A、B兩點(diǎn),且A、B關(guān)于點(diǎn)M對(duì)稱,求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓的長(zhǎng)軸長(zhǎng)為,焦點(diǎn)是,點(diǎn)到直線的距離為,過(guò)點(diǎn)且傾斜角為銳角的直線與橢圓交于A、B兩點(diǎn),使得|=3|.
(1)求橢圓的標(biāo)準(zhǔn)方程;         
(2)求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

動(dòng)圓過(guò)定點(diǎn),且與直線相切,其中.設(shè)圓心的軌跡的程為
(1)求
(2)曲線上的一定點(diǎn)(0) ,方向向量的直線(不過(guò)P點(diǎn))與曲線交與A、B兩點(diǎn),設(shè)直線PA、PB斜率分別為,,計(jì)算
(3)曲線上的兩個(gè)定點(diǎn)、,分別過(guò)點(diǎn)作傾斜角互補(bǔ)的兩條直線分別與曲線交于兩點(diǎn),求證直線的斜率為定值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,橢圓的右焦點(diǎn)與拋物線的焦點(diǎn)重合,過(guò)作與軸垂直的直線與橢圓交于,而與拋物線交于兩點(diǎn),且.

(Ⅰ)求橢圓的方程;
(Ⅱ)若過(guò)的直線與橢圓相交于兩點(diǎn)
設(shè)為橢圓上一點(diǎn),且滿足為坐標(biāo)原點(diǎn)),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在直角坐標(biāo)系xOy中,直線l的方程為x-y+4=0,曲線C的參數(shù)方程為 (α為參數(shù)).
(1)已知在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長(zhǎng)度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,點(diǎn)P的極坐標(biāo)為(4,),判斷點(diǎn)P與直線l的位置關(guān)系;
(2)設(shè)點(diǎn)Q是曲線C上的一個(gè)動(dòng)點(diǎn),求它到直線l的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè),在平面直角坐標(biāo)系中,已知向量,向量,,動(dòng)點(diǎn)的軌跡為E.
(1)求軌跡E的方程,并說(shuō)明該方程所表示曲線的形狀;
(2)已知,證明:存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與軌跡E恒有兩個(gè)交點(diǎn)A,B,且(O為坐標(biāo)原點(diǎn)),并求出該圓的方程;
(3)已知,設(shè)直線與圓C:(1<R<2)相切于A1,且與軌跡E只有一個(gè)公共點(diǎn)B1,當(dāng)R為何值時(shí),|A1B1|取得最大值?并求最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知在平面直角坐標(biāo)系中的一個(gè)橢圓,它的中心在原點(diǎn),左焦點(diǎn)為,且過(guò)點(diǎn).
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)點(diǎn),若是橢圓上的動(dòng)點(diǎn),求線段的中點(diǎn)的軌跡方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案