已知點(diǎn)M與x軸的距離和點(diǎn)M與點(diǎn)F(0,4)的距離相等,求點(diǎn)M的軌跡方程.
考點(diǎn):軌跡方程
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:利用直接法,設(shè)出動(dòng)點(diǎn)為P的坐標(biāo)(x,y),利用條件建立方程并化簡(jiǎn)即可.
解答: 解:由題意設(shè)動(dòng)點(diǎn)M(x,y),則
∵點(diǎn)M與x軸的距離和點(diǎn)M與點(diǎn)F(0,4)的距離相等,
∴|y|=
x2+(y-4)2

∴y=
1
8
x2
+2,
即點(diǎn)M的軌跡方程是y=
1
8
x2
+2.
點(diǎn)評(píng):直接法求動(dòng)點(diǎn)的軌跡方程是求動(dòng)點(diǎn)的軌跡方程的基本方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=4cosωx•sin(ωx-
π
6
)+1(ω>0)的最小正周期是π.
(Ⅰ)求f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)求f(x)在[
π
8
,
8
]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從一個(gè)底面半徑和高都是R的圓柱中,挖去一個(gè)以圓柱的上底為底,下底面的中心為頂點(diǎn)的圓錐,如果用一個(gè)與圓柱下表面距離等于L,并且平行于底面的平面去截此幾何體,求所截得的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2sin(ωx),其中常數(shù)ω>0.
(1)當(dāng)ω=2時(shí),x∈[-
π
6
,
π
3
],求f(x)的值域;
(2)若y=f(x)在[-
π
4
3
]單調(diào)遞增,求ω的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

我國(guó)是水資源較貧乏的國(guó)家之一,各地采用價(jià)格調(diào)控等手段來達(dá)到節(jié)約用水的目的,某市每戶每月用水收費(fèi)辦法是:水費(fèi)=基本費(fèi)+超額費(fèi)+定額損耗費(fèi).且有如下兩條規(guī)定:
①若每月用水量不超過最低限量m立方米,只付基本費(fèi)10元加上定額損耗費(fèi)2元;
②若用水量超過m立方米時(shí),除了付以上同樣的基本費(fèi)和定額損耗費(fèi)外,超過部分每立方米加付n元的超額費(fèi).
解答以下問題:
(1)寫出每月水費(fèi)y(元)與用水量x(立方米)的函數(shù)關(guān)系式;
(2)若該市某家庭今年一季度每月的用水量和支付的費(fèi)用如下表所示:
月份 用水量(立方米) 水費(fèi)(元)
5 17
6 22
3.5 12
試判斷該家庭今年一、二、三各月份的用水量是否超過最低限量,并求m,n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}的前n項(xiàng)為Sn,Sn=2an-3n(n∈N*).
(1)證明:數(shù)列{an+3}是等比數(shù)列;
(2)求數(shù)列{an}的通項(xiàng)公式an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某校要建一個(gè)面積為450平方米的矩形球場(chǎng),要求球場(chǎng)的一面利用舊墻,其他各面用鋼筋網(wǎng)圍成,且在矩形一邊的鋼筋網(wǎng)的正中間要留一個(gè)3米的進(jìn)出口(如圖).設(shè)矩形的長(zhǎng)為x米,鋼筋網(wǎng)的總長(zhǎng)度為y米.
(Ⅰ)列出y與x的函數(shù)關(guān)系式,并寫出其定義域;
(Ⅱ)問矩形的長(zhǎng)與寬各為多少米時(shí),所用的鋼筋網(wǎng)的總長(zhǎng)度最。
(Ⅲ)若由于地形限制,該球場(chǎng)的長(zhǎng)和寬都不能超過25米,問矩形的長(zhǎng)與寬各為多少米時(shí),所用的鋼筋網(wǎng)的總長(zhǎng)度最?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在(-1,1)上的函數(shù)f(x)是減函數(shù),且滿足f(1-a)<f(a),求實(shí)數(shù)a取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題:“能被2或5整除的數(shù),末位數(shù)字是0”的逆否命題是:
 

查看答案和解析>>

同步練習(xí)冊(cè)答案