20.不等式x2-3x+2≤0的解集為( 。
A.[1,2]B.(-∞,1)∪(2,+∞)C.(1,2)D.(-∞,1]∪[2,+∞)

分析 把不等式化為(x-1)(x-2)≤0,寫出解集即可.

解答 解:不等式x2-3x+2≤0可化為
(x-1)(x-2)≤0,
解得1≤x≤2;
所以不等式的解集為[1,2].
故選:A.

點(diǎn)評(píng) 本題考查了一元二次不等式的解法問題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.曲線f(x)=x3+x-2在點(diǎn)P處的切線平行于直線4x-y-1=0,則點(diǎn)P的坐標(biāo)為(  )
A.(1,0)B.(2,8)C.(1,0)或(-1,-4)D.(2,8)或(-1,-4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知直線y=kx+1與曲線y=x3+mx+n相切于點(diǎn)P(1,3),則n=(  )
A.-1B.1C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知數(shù)列{an}的通項(xiàng)為an=log(n+1)(n+2)(n∈N*),我們把使乘積a1•a2•a3…an為整數(shù)的n叫做“優(yōu)數(shù)”,則在(1,2012]內(nèi)的所有“優(yōu)數(shù)”的和為2026.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知數(shù)列{an}中,其前n項(xiàng)和Sn滿足Sn=2an-2(n∈N*).
(1)求證:數(shù)列{an}為等比數(shù)列,并求{an}的通項(xiàng)公式;
(2)設(shè)bn=(n+1)•an,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.按照如圖的程序框圖執(zhí)行,若輸出結(jié)果為31,則M處條件可以是( 。
A.k>32B.k≥16C.k≥32D.k<16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.某蛋糕店每天制作生日蛋糕若干個(gè),每個(gè)生日蛋糕的成本為50元,然后以每個(gè)100元的價(jià)格出售,如果當(dāng)天賣不完,剩下的蛋糕作垃圾處理.現(xiàn)需決策此蛋糕店每天應(yīng)該制作幾個(gè)生日蛋糕,為此搜集并整理了100天生日蛋糕的日需求量(單位:個(gè)),得到如圖所示的柱狀圖,以100天記錄的各需求量的頻率作為每天各需求量發(fā)生的概率.

(1)若蛋糕店一天制作17個(gè)生日蛋糕,
①求當(dāng)天的利潤(rùn)y(單位:元)關(guān)于當(dāng)天需求量n(單位:個(gè),n∈N)的函數(shù)解析式;
②在當(dāng)天的利潤(rùn)不低于750元的條件下,求當(dāng)天需求量不低于18個(gè)的概率.
(2)若蛋糕店計(jì)劃一天制作16個(gè)或17個(gè)生日蛋糕,請(qǐng)你以蛋糕店一天利潤(rùn)的期望值為決定依據(jù),判斷應(yīng)該制作16個(gè)是17個(gè)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若等比數(shù)列{an}滿足a2•a4=$\frac{1}{2}$,則a1a32a5=( 。
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.-$\frac{1}{4}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.在銳角△ABC中,sinA=$\frac{2\sqrt{6}}{5}$,cosC=$\frac{5}{7}$,BC=7,若動(dòng)點(diǎn)P滿足$\overrightarrow{AP}$=$\frac{λ}{2}$$\overrightarrow{AB}$+(1-λ)$\overrightarrow{AC}$(λ∈R),則點(diǎn)P軌跡與直線AB,AC所圍成的封閉區(qū)域的面積( 。
A.3$\sqrt{6}$B.4$\sqrt{6}$C.6$\sqrt{6}$D.12$\sqrt{6}$

查看答案和解析>>

同步練習(xí)冊(cè)答案