精英家教網 > 高中數學 > 題目詳情
5.已知△ABC的三邊a、b、c成等比數列,a、b、c所對的角依次為A、B、C.則sinB+cosB的取值范圍是( 。
A.$(1\;,\;\;1+\frac{{\sqrt{3}}}{2}]$B.$[\frac{1}{2}\;,\;\;1+\frac{{\sqrt{3}}}{2}]$C.$(1\;,\;\;\sqrt{2}]$D.$[\frac{1}{2}\;,\;\;\sqrt{2}]$

分析 由△ABC的三邊長a、b、c成等比數列,可得b2=ac.可得cosB=$\frac{{a}^{2}+{c}^{2}-^{2}}{2ac}$,利用基本不等式的性質可得B的取值范圍,進而可求B+$\frac{π}{4}$的范圍,利用兩角和的正弦函數公式化簡可得sinB+cosB=$\sqrt{2}$sin(B+$\frac{π}{4}$),利用正弦函數的圖象和性質即可得解.

解答 解:∵△ABC的三邊長a、b、c成等比數列,
∴b2=ac.
∴cosB=$\frac{{a}^{2}+{c}^{2}-^{2}}{2ac}$≥$\frac{2ac-ac}{2ac}$=$\frac{1}{2}$,當且僅當a=c時取等號.
∴B∈(0,$\frac{π}{3}$].
∴可得:B+$\frac{π}{4}$∈($\frac{π}{4}$,$\frac{7π}{12}$],
∴sinB+cosB=$\sqrt{2}$sin(B+$\frac{π}{4}$)∈(1,$\sqrt{2}$],
故選:C.

點評 本題考查了等比數列的性質、余弦定理、基本不等式的性質、三角函數求值,正弦函數的圖象和性質,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

15.各項均為正數的等比數列{an}的前n項和為Sn,若S2=2,S6=14,則S8=( 。
A.16B.20C.26D.30

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

16.如圖1,由正四棱錐P-ABCD和正四棱柱ABCD-A1B1C1D1所組成的幾何體的三視圖如圖2.
(1)求證:PC⊥平面A1BD;
(2)求點P到平面A1BD的距離.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

13.已知m、n是兩條不重合的直線,α、β、γ是三個兩兩不重合的平面,給出下列四個命題:
①若m⊥α,m⊥β,則α∥β;
②若m?α,n?β,m∥n,則α∥β;
③若α⊥γ,β⊥γ,則α∥β;
④若m、n是異面直線,m?α,m∥β,n?β,n∥α,則α∥β
其中真命題是(  )
A.①和②B.①和③C.①和④D.③和④

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

20.橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左焦點為F,離心率為$\frac{{\sqrt{2}}}{2}$,過點F且與x軸垂直的直線被橢圓截得的線段長為4.則該橢圓的標準方程是$\frac{x^2}{16}+\frac{y^2}{8}=1$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

10.利用基本不等式求最值,下列各式運用正確的是( 。
A.$y=x+\frac{4}{x}≥2\sqrt{x•\frac{4}{x}}=4$
B.$y=sinx+\frac{4}{sinx}≥2\sqrt{sinx•\frac{4}{sinx}}=4\;(x為銳角)$
C.$y=lgx+4{log_x}10≥2\sqrt{lgx•4{{log}_x}10}=4$
D.$y={3^x}+\frac{4}{3^x}≥2\sqrt{{3^x}•\frac{4}{3^x}}=4$

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

17.設函數f(x)=$\left\{\begin{array}{l}{1+lo{g}_{2}(2-x),x<1}\\{{2}^{x-1},x≥1}\end{array}\right.$,g(x)=b-2f(x),若y=f(x)-g(x)恰有2個零點,則b的取值范圍是( 。
A.(-∞,3)B.(-∞,3]C.(3,+∞)D.[3,+∞)

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

14.設P={x|x<4},Q={x|-2<x<2},則P?Q.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

15.在△ABC中,若(a-c•cosB)sinB=(b-c•cosA)sinA,判斷△ABC的形狀.

查看答案和解析>>

同步練習冊答案