A. | $(1\;,\;\;1+\frac{{\sqrt{3}}}{2}]$ | B. | $[\frac{1}{2}\;,\;\;1+\frac{{\sqrt{3}}}{2}]$ | C. | $(1\;,\;\;\sqrt{2}]$ | D. | $[\frac{1}{2}\;,\;\;\sqrt{2}]$ |
分析 由△ABC的三邊長a、b、c成等比數列,可得b2=ac.可得cosB=$\frac{{a}^{2}+{c}^{2}-^{2}}{2ac}$,利用基本不等式的性質可得B的取值范圍,進而可求B+$\frac{π}{4}$的范圍,利用兩角和的正弦函數公式化簡可得sinB+cosB=$\sqrt{2}$sin(B+$\frac{π}{4}$),利用正弦函數的圖象和性質即可得解.
解答 解:∵△ABC的三邊長a、b、c成等比數列,
∴b2=ac.
∴cosB=$\frac{{a}^{2}+{c}^{2}-^{2}}{2ac}$≥$\frac{2ac-ac}{2ac}$=$\frac{1}{2}$,當且僅當a=c時取等號.
∴B∈(0,$\frac{π}{3}$].
∴可得:B+$\frac{π}{4}$∈($\frac{π}{4}$,$\frac{7π}{12}$],
∴sinB+cosB=$\sqrt{2}$sin(B+$\frac{π}{4}$)∈(1,$\sqrt{2}$],
故選:C.
點評 本題考查了等比數列的性質、余弦定理、基本不等式的性質、三角函數求值,正弦函數的圖象和性質,考查了推理能力與計算能力,屬于中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | ①和② | B. | ①和③ | C. | ①和④ | D. | ③和④ |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $y=x+\frac{4}{x}≥2\sqrt{x•\frac{4}{x}}=4$ | |
B. | $y=sinx+\frac{4}{sinx}≥2\sqrt{sinx•\frac{4}{sinx}}=4\;(x為銳角)$ | |
C. | $y=lgx+4{log_x}10≥2\sqrt{lgx•4{{log}_x}10}=4$ | |
D. | $y={3^x}+\frac{4}{3^x}≥2\sqrt{{3^x}•\frac{4}{3^x}}=4$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (-∞,3) | B. | (-∞,3] | C. | (3,+∞) | D. | [3,+∞) |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com