【題目】PM2.5是指大氣中直徑小于或等于2.5微米的顆粒物,也稱為可入肺顆粒物.我國PM2.5標(biāo)準(zhǔn)采用世衛(wèi)組織設(shè)定的最寬限值,即PM2.5日均值在35微克/立方米以下空氣質(zhì)量為一級;在35微克/立方米~75微克/立方米之間空氣質(zhì)量為二級;在75微克/立方米以上空氣質(zhì)量為超標(biāo). 某市環(huán)保局從市區(qū)2016年全年每天的PM2.5監(jiān)測數(shù)據(jù)中隨機(jī)抽取15天的數(shù)據(jù)作為樣本,監(jiān)測值如莖葉圖所示(十位為莖,個(gè)位為葉)
(Ⅰ)從這15天的數(shù)據(jù)中任取一天,求這天空氣質(zhì)量達(dá)到一級的概率;
(Ⅱ)從這15天的數(shù)據(jù)中任取3天的數(shù)據(jù),記ξ表示其中空氣質(zhì)量達(dá)到一級的天數(shù),求ξ的分布列;
(Ⅲ)以這15天的PM2.5的日均值來估計(jì)一年的空氣質(zhì)量情況,(一年按360天來計(jì)算),則一年中大約有多少天的空氣質(zhì)量達(dá)到一級.

【答案】解:(Ⅰ)記“從這15天的數(shù)據(jù)中任取一天,這天空氣質(zhì)量達(dá)到一級”為事件A,

則P(A)= =

(Ⅱ)依據(jù)條件,ξ服從超幾何分布,其中N=15,M=5,n=3,

ξ的可能值為0,1,2,3,其分布列為:

P(ξ=k)= ,其中k=0,1,2,3;

ξ

0

1

2

3

P

(Ⅲ)依題意可知,一年中每天空氣質(zhì)量達(dá)到一級的概率為P= = ,

一年中空氣質(zhì)量達(dá)到一級的天數(shù)為η,則η~B(360, );

∴Eη=360× =120(天),

∴一年中平均有120天的空氣質(zhì)量達(dá)到一級.


【解析】(Ⅰ)用頻率估計(jì)概率,求出“從這15天的數(shù)據(jù)中任取一天,這天空氣質(zhì)量達(dá)到一級”的概率;(Ⅱ)依據(jù)條件,ξ服從超幾何分布,ξ的可能值為0,1,2,3,

且P(ξ=k)= ,寫出分布列;(Ⅲ)依題意知一年中每天空氣質(zhì)量達(dá)到一級的概率P,

一年中空氣質(zhì)量達(dá)到一級的天數(shù)η,η~B(360, ),計(jì)算Eη即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) f(x)=2lnx+x2﹣ax. (Ⅰ)當(dāng)a=5時(shí),求f(x)的單調(diào)區(qū)間;
(Ⅱ)設(shè)A(x1 , y1),B(x2 , y2)是曲線y=f(x)圖象上的兩個(gè)相異的點(diǎn),若直線AB的斜率k>1恒成立,求實(shí)數(shù)a的取值范圍;
(Ⅲ)設(shè)函數(shù)f(x)有兩個(gè)極值點(diǎn)x1 , x2 , x1<x2且x2>e,若f(x1)﹣f(x2)≥m恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=4lnx﹣x+ , g(x)=2x2﹣bx+20,若對于任意x1∈(0,2),都存在x2∈[1,2],使得f(x1)≥g(x2)成立,則實(shí)數(shù)b的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知各項(xiàng)均不為0的等差數(shù)列{an}前n項(xiàng)和為Sn , 滿足S4=2a5 , a1a2=a4 , 數(shù)列{bn}滿足bn+1=2bn , b1=2.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)設(shè)cn= ,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的個(gè)數(shù)是( ) ①若f(x)= +a為奇函數(shù),則a= ;
②“在△ABC中,若sinA>sinB,則A>B”的逆命題是假命題;
③“三個(gè)數(shù)a,b,c成等比數(shù)列”是“b= ”的既不充分也不必要條件;
④命題“x∈R,x3﹣x2+1≤0”的否定是“x0∈R,x03﹣x02+1>0”.
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a>0,b>0,c>0,函數(shù)f(x)=|x+a|﹣|x﹣b|+c的最大值為10.
(1)求a+b+c的值;
(2)求 (a﹣1)2+(b﹣2)2+(c﹣3)2的最小值,并求出此時(shí)a、b、c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ex﹣ax﹣1,g(x)=lnx﹣ax+a,若存在x0∈(1,2),使得f(x0)g(x0)<0,則實(shí)數(shù)a的取值范圍是(
A.
B.(ln2,e﹣1)
C.[1,e﹣1)
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=sinx﹣xcosx(x≥0).
(1)求函數(shù)f(x)的圖象在 處的切線方程;
(2)若任意x∈[0,+∞),不等式f(x)<ax3恒成立,求實(shí)數(shù)a的取值范圍;
(3)設(shè)m=f(x)dx, ,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列選項(xiàng)中,錯(cuò)誤的是(
A.若p為真,則¬(¬p)也為真
B.若“p∧q為真”,則“p∨q為真”為真命題
C.x∈R,使得tanx=2017
D.“2x ”是“l(fā)og x<0”的充分不必要條件

查看答案和解析>>

同步練習(xí)冊答案