分析 (I)證AB垂直于平面內(nèi)的兩條相交直線,再由線面垂直⇒面面垂直;
(II)直接利用體積公式求得三棱錐A-B1CC1體積.
解答 (Ⅰ)證明:由側(cè)面ABB1A1為正方形,知AB⊥BB1.
又AB⊥B1C,BB1∩B1C=B1,所以AB⊥平面BB1C1C,
又AB?平面ABB1A1,所以平面ABB1A1⊥BB1C1C.…(4分)
(Ⅱ)解:由題意,三棱錐A-B1CC1體積=$\frac{1}{3}×\frac{\sqrt{3}}{4}×{2}^{2}×2$=$\frac{2\sqrt{3}}{3}$.
點(diǎn)評 本題考查面面垂直的判定及空間幾何體的體積,考查學(xué)生分析解決問題的能力,正確運(yùn)用線面垂直的判定是關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ?x∈R,2x+x2>1 | B. | ?x∈R,2x+x2≥1 | C. | ?x∈R,2x+x2>1 | D. | ?x∈R,2x+x2≥1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|$\frac{3}{4}$≤x≤2} | B. | {x|$\frac{3}{4}$≤x<2} | C. | {x|x<2} | D. | {x|x>2或x≤$\frac{3}{4}$} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com