給出兩個(gè)命題:命題p:方程4x2+4(m-2)x+1=0無(wú)實(shí)數(shù)根;命題q:函數(shù)y=(3-m)x為增函數(shù).若“p或q”為真命題,求實(shí)數(shù)m的取值范圍.
考點(diǎn):復(fù)合命題的真假
專題:簡(jiǎn)易邏輯
分析:對(duì)兩個(gè)條件化簡(jiǎn),求出各自成立時(shí)參數(shù)所滿足的范圍,由“p或q”為真命題知p,q中至少有一個(gè)為真命題,求出m的范圍.
解答: 解:若p為真命題,則△=16(m-2)2-16<0
∴1<m<3.
若q為真命題,則3-m>1,∴m<2.…(6分)
又“p或q”為真命題
∴p,q中至少有一個(gè)為真命題.


∴由圖得:實(shí)數(shù)m的取值范圍是(-∞,3). …(12分)
點(diǎn)評(píng):本題考查命題的真假判斷與運(yùn)用,解答本題的關(guān)鍵是由“p或q”為真命題知p,q中至少有一個(gè)為真命題,熟練掌握復(fù)合命題真假的判斷方法很重要.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知△ABC是正三角形,EA、CD都垂直于平面ABC,且EA=AB=2a,DC=a,F(xiàn)是BE的中點(diǎn),求證:
(1)FD∥平面ABC;
(2)AF⊥平面EDB;
(3)求直線AD與平面EDB所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=
1
3
x3+mx2+nx,g(x)=f′(x)-2x-3的圖象關(guān)于x=-2對(duì)稱,
(1)若f′(0)=2,求f(x)的解析式;
(2)求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2+2ax+4
(1)當(dāng)a=-1時(shí),求函數(shù)f(x)在區(qū)間[-2,2]上的最大值;
(2)若函數(shù)f(x)在區(qū)間[-2,1]上是單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

A是△BCD所在平面外一點(diǎn),M,N,P分別是△ABC,△ACD,△ABD的重心,且S△BCD=9,則△MNP的面積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

從分別寫有A,B,C,D,E的五張卡片中任取兩張,這兩張的字母順序恰好相鄰的概率是(  )
A、
2
5
B、
1
5
C、
3
10
D、
7
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

從裝有2個(gè)紅球和2個(gè)黒球的口袋內(nèi)任取2個(gè)球,則互斥而不對(duì)立的兩個(gè)事件是( 。
A、“至少有一個(gè)黑球”與“都是紅球”
B、“至少有一個(gè)黒球”與“都是黒球”
C、“恰有m個(gè)黒球”與“恰有2個(gè)黒球”
D、“至少有一個(gè)黒球”與“至少有1個(gè)紅球”

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某特產(chǎn)經(jīng)營(yíng)店銷售某種品牌蜜餞,蜜餞每盒進(jìn)價(jià)為5元,預(yù)計(jì)這種蜜餞以每盒20元的價(jià)格銷售時(shí)該店一天可銷售20盒,經(jīng)過市場(chǎng)調(diào)研發(fā)現(xiàn)每盒蜜餞的銷售價(jià)格在每盒20元的基礎(chǔ)上每減少一元?jiǎng)t增加銷售4盒,現(xiàn)設(shè)每盒蜜餞的銷售價(jià)格為x(0≤x≤20)元,且銷售量與進(jìn)貨量相同.
(1)寫出該特產(chǎn)店一天內(nèi)銷售這種蜜餞所獲得的利潤(rùn)y(元)與每盒蜜餞的銷售價(jià)格x的函數(shù)關(guān)系式;
(2)當(dāng)每盒蜜餞銷售價(jià)格x為多少時(shí),該特產(chǎn)店一天內(nèi)利潤(rùn)f(x)(元)最大,并求出這個(gè)最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

點(diǎn)P(-5,7)到直線12x+5y-3=0的距離為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案