18.統(tǒng)計局就某地居民的月收入情況調(diào)查了10000人,并根據(jù)所得數(shù)據(jù)畫出了樣本頻率分布直方圖,每個分組包括左端點,不包括右端點,如第一組表示收入在[500,1000)元.
(1)為了分析居民的收入與年齡、職業(yè)等方面的關(guān)系,必須按月收入再從這10000人中用分層抽樣方法抽出100人作進(jìn)一步分析,則月收入在[2000,2500)元的應(yīng)抽取多少人?
(2)根據(jù)頻率分布直方圖估計樣本數(shù)據(jù)的中位數(shù);
(3)根據(jù)頻率分布直方圖估計樣本數(shù)據(jù)的平均數(shù).

分析 (1)根據(jù)頻率和為1求出月收入在[2000,2500)的頻率,再根據(jù)分層抽樣原理計算應(yīng)抽取的人數(shù);
(2)根據(jù)中位數(shù)左右兩邊頻率相等,列出方程求出即可;
(3)取中間數(shù)乘頻率,再求和,即可求得平均數(shù).

解答 解:(1)月收入在[2000,2500)的頻率為
$\frac{1}{2}$×[1-(0.0002+0.0004+0.0003+0.0001)×500]=0.25,
∴對應(yīng)的頻數(shù)為0.25×10000=2500(人),
又抽取的樣本容量為100.∴抽取比例為$\frac{100}{10000}$=0.01,
∴月收入在[2000,2500)的這段應(yīng)抽取2500×0.01=25(人);
(2)從左數(shù)第一組的頻率為0.0002×500=0.1;
第二組的頻率為0.0004×500=0.2;
第三組的頻率為0.0005×500=0.25;
∴中位數(shù)位于第三組,設(shè)中位數(shù)為1500+x,
則x×0.0005=0.5-0.1-0.2=0.2,
解得x=400,
∴中位數(shù)為1900(元);
(3)根據(jù)頻率分布直方圖,計算平均數(shù)為
750×0.1+1250×0.2+1750×0.25+2250×0.25+2750×0.15+3250×0.05=1900,
所以樣本數(shù)據(jù)的平均數(shù)為1900(元).

點評 本題考查了頻率分布直方圖,分層抽樣方法,是統(tǒng)計常規(guī)題型,解答此類題的關(guān)鍵是利用頻率分布直方圖求頻數(shù)或頻率.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知數(shù)列{an}的前n項和Sn與通項an滿足Sn=$\frac{1}{2}$-$\frac{1}{2}{a_n}$.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)f(x)=log3x,bn=f(a1)+f(a2)+…+f(an),Tn=$\frac{1}{b_1}$+$\frac{1}{b_2}$+…+$\frac{1}{bn}$,求T2012

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.求下列各式的值:
(1)sin[arcsin$\frac{1}{2}$+arccos(-$\frac{\sqrt{3}}{2}$)];
(2)sin(arccos$\frac{12}{13}$);
(3)sin(arccos(-$\frac{12}{13}$));
(4)sin($\frac{π}{6}$-arccos$\frac{4}{5}$);
(5)sin(2arccos$\frac{4}{5}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在平面直角坐標(biāo)系xOy中,以O(shè)x軸為始邊作兩個鈍角α,β,它們的終邊分別與單位圓相交于A,B兩點,已知A,B的橫坐標(biāo)分別為-$\frac{\sqrt{2}}{10}$,-$\frac{2\sqrt{5}}{5}$.
(1)求tan(α+β)的值;
(2)求α+2β的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.區(qū)分排列問題與組合問題的關(guān)鍵是取出的元素是否需要排序,不同的順序是否為解決問題的不同方法:其中排列問題與順序有關(guān),而組合問題與順序無關(guān).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知(ax+b)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,若a0=1,a1=10,則a2等于( 。
A.10B.20C.40D.80

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,已知一長為4dm,寬為3dm的長方形木塊在桌面上作無滑動的翻滾,翻滾到第四面時被一小木塊擋住,使木塊底面與桌面成30°角,求點A走過的路程的長度及走過的弧所在的扇形的總面積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.甲、乙、丙、丁四人參加射擊項目選拔賽,四人平均成績和方差如表:
平均環(huán)數(shù)$\overline{x}$8.68.98.98.2
方差s23.53.52.15.6
若從四人中選一人,則最佳人選是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.“五•一”期間某志愿者服務(wù)隊準(zhǔn)備從甲、乙等7名志愿者中選派4人參加A、B、C、D四個旅游景點的志愿服務(wù),每個旅游景點安排1名志愿者,若要求甲、乙兩志愿者至少有1人參加,那么這4名志愿者去四個旅游景點的安排方法共有(  )種.
A.30B.600C.720D.840

查看答案和解析>>

同步練習(xí)冊答案