6.已知$\overrightarrow{a}$,$\overrightarrow$是任意兩個(gè)向量,下列條件:①$\overrightarrow{a}$=$\overrightarrow$;②|$\overrightarrow{a}$|=|$\overrightarrow$|;③$\overrightarrow{a}$與$\overrightarrow$的方向相反;④$\overrightarrow{a}$=0或$\overrightarrow$=0;⑤$\overrightarrow{a}$與$\overrightarrow$都是單位向量.其中,使向量$\overrightarrow{a}$與$\overrightarrow$平行的有①③④(只填序號(hào))

分析 利用向量$\overrightarrow{a}$與$\overrightarrow$平行的定義即可得出.

解答 解:由①$\overrightarrow{a}$=$\overrightarrow$;②|$\overrightarrow{a}$|=|$\overrightarrow$|;③$\overrightarrow{a}$與$\overrightarrow$的方向相反;④$\overrightarrow{a}$=0或$\overrightarrow$=0;⑤$\overrightarrow{a}$與$\overrightarrow$都是單位向量.
其中,使向量$\overrightarrow{a}$與$\overrightarrow$平行的有①,③,④.
故答案為:①③④.

點(diǎn)評(píng) 本題考查了向量平行的定義,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知向量$\overrightarrow{a}$=(-3,2),$\overrightarrow$=(2,1),$\overrightarrow{c}$=(3,-1),t∈R,
(1)若$\overrightarrow{a}$-t$\overrightarrow$與$\overrightarrow{c}$共線,求實(shí)數(shù)t的值;
(2)請(qǐng)用向量$\overrightarrow{a}$,$\overrightarrow$表示向量$\overrightarrow{c}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知點(diǎn)A(-1,-2),B(3,8),若$\overrightarrow{AB}=2\overrightarrow{AC}$,則點(diǎn)C的坐標(biāo)為(1,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.若$\frac{sinα-cosα}{sinα+cosα}$=2,則tan(α-$\frac{π}{4}$)=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知數(shù)列{an}的通項(xiàng)公式為an=$\frac{1}{3n-2}$,n∈N*
(1)求數(shù)列{$\frac{{a}_{n}+2}{{a}_{n}}$}的前n項(xiàng)和Sn;
(2)設(shè)bn=anan+1,求{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.點(diǎn)M(1,1)到拋物線y=ax2的準(zhǔn)線的距離是2,則a=$\frac{1}{4}$或-$\frac{1}{12}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.在△ABC中,若b2=ac,則cos(A-C)+cosB+cos2B-2的值是-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.兩直線x+y-5=0和直x-y=0的交點(diǎn)坐標(biāo)為$(\frac{5}{2},\frac{5}{2})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.z∈C,若|z|-$\overline{z}$=1+2i,則$\frac{z}{1+i}$等于(  )
A.$\frac{7}{4}+\frac{1}{4}$iB.$\frac{7}{4}-\frac{1}{4}$iC.-$\frac{1}{4}-\frac{1}{4}$iD.-$\frac{1}{4}+\frac{1}{4}$i

查看答案和解析>>

同步練習(xí)冊(cè)答案