【題目】已知函數(shù).

(1)討論的單調(diào)區(qū)間;

(2)當時,證明: .

【答案】(1)詳見解析;(2)詳見解析.

【解析】試題分析:(1)求函數(shù)的單調(diào)區(qū)間,先求導,于導數(shù)可知導數(shù)的符號受參數(shù)的取值的影響,根據(jù), , ,分析即可,(2)要證,問題轉(zhuǎn)化為,然后構造函數(shù),只需證明是增函數(shù)即可

試題解析:

解:(1)的定義域為,且,

①當時, ,此時的單調(diào)遞減區(qū)間為.

②當時,由,得;

,得.

此時的單調(diào)減區(qū)間為,單調(diào)增區(qū)間為.

③當時,由,得;

,得.

此時的單調(diào)減區(qū)間為,單調(diào)增區(qū)間為.

(2)當時,要證:

只要證: ,即證: .(*)

,則,

,

由(1)知上單調(diào)遞增,

所以當時, ,于是,所以上單調(diào)遞增,

所以當時,(*)式成立,

故當時, .

.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】為半橢圓的左、右兩個頂點,為上焦點,將半橢圓和線段合在一起稱為曲線

1)求的外接圓圓心的坐標

2)過焦點的直線與曲線交于兩點,若,求所有滿足條件的直線的方程

3)對于一般的封閉曲線,曲線上任意兩點距離的最大值稱為該曲線的“直徑”,如圓的“直徑”就是通常的直徑,橢圓的“直徑”就是長軸的長,求該曲線的“直徑”

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)求的單調(diào)區(qū)間;

(Ⅱ)若對于任意的為自然對數(shù)的底數(shù)),恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知關于xy的方程x2+y24x+4y+m0表示一個圓.

1)求實數(shù)m的取值范圍;

2)若m4,過點P02)的直線l與圓相切,求出直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓

1)若過點的直線l與橢圓C恒有公共點,求實數(shù)a的取值范圍;

2)若存在以點B0,2)為圓心的圓與橢圓C有四個公共點,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知動圓P恒過定點,且與直線相切.

(Ⅰ)求動圓P圓心的軌跡M的方程;

(Ⅱ)正方形ABCD中,一條邊AB在直線y=x+4上,另外兩點C、D在軌跡M上,求正方形的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點,橢圓的離心率為是橢圓E的右焦點,直線AF的斜率為2,O為坐標原點.

1)求E的方程;

2)設過點且斜率為k的直線與橢圓E交于不同的兩M、N,且,求k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐S-ABCD的底面是邊長為1的正方形,則棱SB垂直于底面.

(1)求證:平面SBD⊥平面SAC;

(2)若SA與平面SCD所成角的正弦值為,求SB的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知p:方程x2+y24x+m20表示圓:q:方程1m0)表示焦點在y軸上的橢圓.

(1)若p為真命題,求實數(shù)m的取值范圍;

(2)若命題p、q有且僅有一個為真,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案