【題目】選修4-4:坐標系與參數(shù)方程

以平面直角坐標系的原點為極點, 軸的正半軸為極軸建立極坐標系,已知點的直角坐標為,若直線的極坐標方程為,曲線的參數(shù)方程是,(為參數(shù)).

(1)求直線的直角坐標方程和曲線的普通方程;

(2)設直線與曲線交于兩點,求.

【答案】(1)..(2)1.

【解析】試題分析(1) 展開后利用公式直接轉化為直角坐標方程.消去后得到直角坐標方程.(2)求出直線的參數(shù)方程,代入拋物線,利用直線參數(shù)的幾何意義求得的值.

試題解析】

(1)由,得,

, ,得.

因為,消去

所以直線的直角坐標方程為,曲線的普通方程為.

(2)點的直角坐標為,點在直線上.

設直線的參數(shù)方程為,( 為參數(shù)),代入,得.

設點對應的參數(shù)分別為 ,則, ,

所以 .

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某校高二某班的一次數(shù)學測試成績的莖葉圖和頻率分布直方圖都受到不同程度的破壞,其可見部分如圖所示.據(jù)此解答如下問題:

(1)計算頻率分布直方圖中[80,90)間的矩形的高;

(2)根據(jù)莖葉圖和頻率分布直方圖估計這次測試的平均分.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】ab是方程2(lg x)2-lg x4+1=0的兩個實根,求lg(ab)·(logab+logba)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某蔬菜基地種植西紅柿,由歷年市場行情得知,從二月一日起的300天內(nèi),西紅柿市場銷售價與上市時間的關系用圖(1)的一條折線表示;西紅柿的種植成本與上市時間的關系用圖(2)的拋物線段表示.

(1)寫出圖(1)表示的市場售價與時間的函數(shù)關系式寫出圖(2)表示的種植成本與時間的函數(shù)關系式

(2)認定市場售價減去種植成本為純收益,問何時上市的西紅柿收益最大?(注:市場售價和種植成本的單位:元/kg,時間單位:天.)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知偶函數(shù)滿足,當時,,關于的不等式上有且只有200個整數(shù)解,則實數(shù)的取值范圍為( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)當時,求函數(shù)的單調(diào)區(qū)間;

(2)若不等式對任意的正實數(shù)都成立,求實數(shù)的最大整數(shù);

(3)當時,若存在實數(shù),使得求證: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線經(jīng)過橢圓: 的左頂點和上頂點,橢圓的右頂點為,點是橢圓上位于軸上方的動點,直線與直線分別交于兩點。

(1)求橢圓方程;

(2)求線段的長度的最小值;

(3)當線段的長度最小時,在橢圓上有兩點,使得,的面積都為,求直線y軸上的截距。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖:某快遞小哥從地出發(fā),沿小路以平均時速20公里小時,送快件到處,已知(公里),,是等腰三角形,

(1) 試問,快遞小哥能否在50分鐘內(nèi)將快件送到處?

(2)快遞小哥出發(fā)15分鐘后,快遞公司發(fā)現(xiàn)快件有重大問題,由于通訊不暢,公司只能派車沿大路追趕,若汽車平均時速60公里小時,問,汽車能否先到達處?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f (x)=(-6≤x≤10)的所有零點之和為____________

查看答案和解析>>

同步練習冊答案