【題目】三角形的三個頂點(diǎn)的坐標(biāo)分別為,,則該三角形的重心(三邊中線交點(diǎn))的坐標(biāo)為.類比這個結(jié)論,連接四面體的一個頂點(diǎn)及其對面三角形重心的線段稱為四面體的中線,四面體的四條中線交于一點(diǎn),該點(diǎn)稱為四面體的重心.若四面體的四個頂點(diǎn)的空間坐標(biāo)分別為,,,,則該四面體的重心的坐標(biāo)為( )

A.

B.

C.

D.

【答案】D

【解析】

首先根據(jù)題意,三角形的重心的坐標(biāo)是三個頂點(diǎn)坐標(biāo)的算術(shù)平均數(shù),從平面擴(kuò)展到空間,從三角形擴(kuò)展到四面體,得到四面體的重心的坐標(biāo)是四個頂點(diǎn)的算術(shù)平均數(shù),從而得到答案.

根據(jù)題意,三角形重心的坐標(biāo)是三個頂點(diǎn)的坐標(biāo)的算術(shù)平均數(shù),

從平面擴(kuò)展到空間,從三角形推廣到四面體,

就是四面體重心的坐標(biāo)是四個頂點(diǎn)的算術(shù)平均數(shù),

故選D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線C的焦點(diǎn)為F,M是拋物線C上位于第一象限內(nèi)的任意一點(diǎn),O為坐標(biāo)原點(diǎn),記經(jīng)過M,F,O三點(diǎn)的圓的圓心為Q,且點(diǎn)Q到拋物線C的準(zhǔn)線的距離為

求點(diǎn)Q的縱坐標(biāo);可用p表示

求拋物線C的方程;

設(shè)直線l與拋物線C有兩個不同的交點(diǎn)A,若點(diǎn)M的橫坐標(biāo)為2,且的面積為,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在“新零售”模式的背景下,某大型零售公司咪推廣線下分店,計(jì)劃在市的區(qū)開設(shè)分店,為了確定在該區(qū)開設(shè)分店的個數(shù),該公司對該市已開設(shè)分店聽其他區(qū)的數(shù)據(jù)作了初步處理后得到下列表格.記表示在各區(qū)開設(shè)分店的個數(shù), 表示這個個分店的年收入之和.

(個)

2

3

4

5

6

(百萬元)

2.5

3

4

4.5

6

(1)該公司已經(jīng)過初步判斷,可用線性回歸模型擬合的關(guān)系,求關(guān)于的線性回歸方程;

(2)假設(shè)該公司在區(qū)獲得的總年利潤(單位:百萬元)與之間的關(guān)系為,請結(jié)合(1)中的線性回歸方程,估算該公司應(yīng)在區(qū)開設(shè)多少個分時,才能使區(qū)平均每個分店的年利潤最大?

(參考公式: ,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,側(cè)面底面,為等腰直角三角形,,為 直角梯形,.

(1)若的中點(diǎn),上一點(diǎn)滿足,求證:平面;

(2)若,求四棱錐的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓中心在原點(diǎn),焦點(diǎn)在軸上,且其焦點(diǎn)和短軸端點(diǎn)都在圓上.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)點(diǎn)是圓上一點(diǎn),過點(diǎn)作圓的切線交橢圓,兩點(diǎn),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了引導(dǎo)居民合理用水,某市決定全面實(shí)施階梯水價.階梯水價原則上以住宅(一套住宅為一戶)的月用水量為基準(zhǔn)定價,具體劃分標(biāo)準(zhǔn)如表:

階梯級別

第一階梯水量

第二階梯水量

第三階梯水量

月用水量范圍(單位:立方米)

從本市隨機(jī)抽取了10戶家庭,統(tǒng)計(jì)了同一月份的月用水量,得到如圖莖葉圖:

(1)現(xiàn)要在這10戶家庭中任意選取3家,求取到第二階梯水量的戶數(shù)的分布列與數(shù)學(xué)期望;

(2)用抽到的10戶家庭作為樣本估計(jì)全市的居民用水情況,從全市依次隨機(jī)抽取10戶,若抽到戶月用水量為二階的可能性最大,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(題文)如圖,在五面體ABCDEF中,四邊形EDCF是正方形,

(1)證明:;

(2)已知四邊形ABCD是等腰梯形,且,求五面體ABCDEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xy中,曲線C的參數(shù)方程為為參數(shù)),在以為極點(diǎn),軸的非負(fù)半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為。

1)求曲線C的極坐標(biāo)方程;

(2)設(shè)直線與曲線C相交于A,B兩點(diǎn),P為曲C上的一動點(diǎn),求△PAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方體的棱長為4,動點(diǎn)E,F在棱上,動點(diǎn)P,Q分別在棱AD,CD上。若,,,大于零),則四面體PEFQ的體積

A.都有關(guān)B.m有關(guān),與無關(guān)

C.p有關(guān),與無關(guān)D.π有關(guān),與無關(guān)

查看答案和解析>>

同步練習(xí)冊答案