【題目】已知點在拋物線:的準線上,過點作拋物線的兩條切線,切點分別為,.
(1)證明:為定值;
(2)當點在軸上時,過點作直線,交拋物線于,兩點,滿足.問:直線是否恒過定點,若存在定點,求出點的坐標;若不存在,請說明理由.
【答案】(1)詳見解析;(2)直線過定點 .
【解析】
(1) 求導(dǎo),求得直線PA的方程,將P代入直線方程,求得,同理可知.則,是方程x2﹣2ax﹣4=0的兩個根,則由韋達定理求得的值,即可求證為定值;
(2) 設(shè),.利用點差法可得,同理可得,
結(jié)合垂直關(guān)系可得,又因為,兩式作差,可得,,從而可得結(jié)果.
解:(1)法1:拋物線:的準線為:,故可設(shè)點,
由,得,所以.所以直線的斜率為.
因為點和在拋物線上,所以,.
所以直線的方程為.
因為點在直線上,
所以,即.
同理,.
所以,是方程的兩個根,所以.
又,所以為定值.
法2:設(shè)過點且與拋物線相切的切線方程為,
由,消去得,
由,化簡得,所以.
由,得,所以.
所以直線的斜率為,直線的斜率為.
所以,即.
又,
所以為定值.
(2)存在,由(1)知.
不妨設(shè),則,,即,.
設(shè),.
則,兩式作差,可得,
所以直線的斜率為,同理可得,
因為,所以,
整理得,①
又因為,兩式作差,可得,
從而可得直線的斜率為,
所以直線的方程為,
化簡可得,
將①代入上式得,
整理得.
所以直線過定點,即點的坐標為.
科目:高中數(shù)學 來源: 題型:
【題目】2018年10月28日,重慶公交車墜江事件震驚全國,也引發(fā)了廣大群眾的思考——如何做一個文明的乘客.全國各地大部分社區(qū)組織居民學習了文明乘車規(guī)范.社區(qū)委員會針對居民的學習結(jié)果進行了相關(guān)的問卷調(diào)查,并將得到的分數(shù)整理成如圖所示的統(tǒng)計圖.
(1)求得分在上的頻率;
(2)求社區(qū)居民問卷調(diào)查的平均得分的估計值;(同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點的值作代表)
(3)由于部分居民認為此項學習不具有必要性,社區(qū)委員會對社區(qū)居民的學習態(tài)度作調(diào)查,所得結(jié)果統(tǒng)計如下:(表中數(shù)據(jù)單位:人)
認為此項學習十分必要 | 認為此項學習不必要 | |
50歲以上 | 400 | 600 |
50歲及50歲以下 | 800 | 200 |
根據(jù)上述數(shù)據(jù),計算是否有的把握認為居民的學習態(tài)度與年齡相關(guān).
附:,其中.
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,曲線的參數(shù)方程為 為參數(shù)),以原點為極點,以軸正半軸為極軸建立極坐標系,曲線的極坐標方程為,曲線,的公共點為.
(Ⅰ)求直線的斜率;
(Ⅱ)若點分別為曲線,上的動點,當取最大值時,求四邊形的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線l:過拋物線C:的焦點F,且與拋物線C交于點A、B兩點,過A、B兩點分別作拋物線準線的垂線,垂足分別為M、N,則下列說法錯誤的是
A. 拋物線的方程為B. 線段AB的長度為
C. D. 線段AB的中點到y軸的距離為
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:的離心率為,且經(jīng)過點
Ⅰ求橢圓的標準方程;
Ⅱ已知拋物線的焦點與橢圓的右焦點重合,過點的動直線與拋物線相交于A,B兩個不同的點,在線段AB上取點Q,滿足,證明:點Q總在定直線上.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,底面ABCD是正方形,側(cè)面底面ABCD,且,設(shè)E,F分別為PC,BD的中點.
(1)求證:平面PAD;
(2)求直線EF與平面PBD所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左頂點為,離心率為,過點且斜率為的直線與橢圓交于點與軸交于點.
(1)求橢圓的方程;
(2)設(shè)點為的中點.
(i)若軸上存在點,對于任意的,都有(為原點),求出點的坐標;
(ii)射線(為原點)與橢圓交于點,滿足,求正數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某學校用簡單隨機抽樣方法抽取了30名同學,對其每月平均課外閱讀時間(單位:小時)進行調(diào)查,莖葉圖如圖:
若將月均課外閱讀時間不低于30小時的學生稱為“讀書迷”.
(1)將頻率視為概率,估計該校900名學生中“讀書迷”有多少人?
(2)從已抽取的7名“讀書迷”中隨機抽取男、女“讀書迷”各1人,參加讀書日宣傳活動.
(i)共有多少種不同的抽取方法?
(ii)求抽取的男、女兩位“讀書迷”月均讀書時間相差不超過2小時的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某電子科技公司由于產(chǎn)品采用最新技術(shù),銷售額不斷增長,最近個季度的銷售額數(shù)據(jù)統(tǒng)計如下表(其中表示年第一季度,以此類推):
季度 | |||||
季度編號x | |||||
銷售額y(百萬元) |
(1)公司市場部從中任選個季度的數(shù)據(jù)進行對比分析,求這個季度的銷售額都超過千萬元的概率;
(2)求關(guān)于的線性回歸方程,并預(yù)測該公司的銷售額.
附:線性回歸方程:其中,
參考數(shù)據(jù):.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com