20.下列函數(shù)中,值域?yàn)椋?,+∞)的函數(shù)是( 。
A.y=5${\;}^{\frac{1}{2-x}}$B.y=log2(3x+2)C.y=$\sqrt{1-{2}^{x}}$D.y=($\frac{1}{3}$)1-x

分析 利用基本函數(shù)的性質(zhì),依次對(duì)各選項(xiàng)求解值域,可得結(jié)論.

解答 解:對(duì)于A:y=5${\;}^{\frac{1}{2-x}}$,∵$\frac{1}{2-x}≠0$,∴y≠1,故得函數(shù)y的值域?yàn)椋?,1)∪(1,+∞).
對(duì)于B:y=log2(3x+2),∵3x+2∈(2,+∞),故得函數(shù)y的值域?yàn)椋?,+∞).
對(duì)于C:y=$\sqrt{1-{2}^{2}}$,∵1-2x≥0,∴y≥0,故得函數(shù)y的值域?yàn)閇0,+∞).
對(duì)于D:y=($\frac{1}{3}$)1-x,∵1-x∈R,∴y>0,故得函數(shù)y的值域?yàn)椋?,+∞).
故選D.

點(diǎn)評(píng) 本題考查了函數(shù)值域的求法.高中函數(shù)值域求法有:1、觀察法,2、配方法,3、反函數(shù)法,4、判別式法;5、換元法,6、數(shù)形結(jié)合法,7、不等式法,8、分離常數(shù)法,9、單調(diào)性法,10、利用導(dǎo)數(shù)求函數(shù)的值域,11、最值法,12、構(gòu)造法,13、比例法.要根據(jù)題意選擇.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如圖,一次函數(shù)y=ax+b的圖象與反比例函數(shù)y=$\frac{k}{x}$的圖象交于A、B兩點(diǎn),與x軸交于點(diǎn)C,與y軸交于點(diǎn)D,已知OA=$\sqrt{10}$,點(diǎn)B的坐標(biāo)為(m,-2),tan∠AOC=$\frac{1}{3}$.
(1)求反比例函數(shù)、一次函數(shù)的解析式;
(2)求三角形ABO的面積;
(3)在y軸上存在一點(diǎn)P,使△PDC與△CDO相似,求P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知U=R,集合A={x|x>1},集合B={x|-1<x<2},則圖中陰影部分表示的集合為( 。
A.{x|x>1}B.{x|x>-1}C.{x|-1<x<1}D.{x|-1<x≤1,或x≥2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.函數(shù)y=$\sqrt{{{log}_{0.2}}x}$的定義域?yàn)椋?,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知△ABC面積為3$\sqrt{3}$,A=$\frac{π}{3}$,AB=2,則BC=( 。
A.$\sqrt{3}$B.2C.2$\sqrt{7}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知命題p:?$x∈[\frac{1}{2},1],\frac{1}{x}$-a≥0,命題q:?x∈R,x2+2ax+2-a=0,若p∧q是真命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.下列各組函數(shù)中,表示同一個(gè)函數(shù)的是( 。
A.f(x)=2x+1與g(x)=$\frac{2{x}^{2}+x}{x}$B.y=x-1與y=$\frac{{x}^{2}-1}{x+1}$
C.y=$\frac{{x}^{2}-9}{x-3}$與y=x+3D.f(x)=1與g(x)=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.在橢圓4x2+y2=4上任取一點(diǎn)P,設(shè)P在x軸上的正投影為點(diǎn)D,當(dāng)點(diǎn)P在橢圓上運(yùn)動(dòng)時(shí),動(dòng)點(diǎn)MM滿足$\overrightarrow{PD}$=2$\overrightarrow{MD}$,則動(dòng)點(diǎn)M的軌跡是(  )
A.焦點(diǎn)在x軸上的橢圓B.焦點(diǎn)在y軸上的橢圓
C.D.無(wú)法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)$f(x)=4cosωxcos(ωx+\frac{π}{3}),(ω>0)$的最小正周期為π.
(1)求ω的值;  
(2)討論f(x)在區(qū)間$[{0,\frac{5π}{6}}]$上的單調(diào)性.

查看答案和解析>>

同步練習(xí)冊(cè)答案