分析 這是一個考查類比推理的題目,解題的關鍵是仔細觀察圖中給出的萊布尼茨三角形,并從三解數陣中,找出行與行之間數的關系,探究規(guī)律并其表示出來.
解答 解:類比觀察得,將萊布尼茨三角形的每一行都能提出倍數$\frac{1}{{C_{n+1}^1}}$,
而相鄰兩項之和是上一行的兩者相拱之數,所以類比式子$C_n^r+C_n^{r+1}=C_{n+1}^{r+1}$,有$\frac{1}{{C_{n+1}^1C_n^r}}=\frac{1}{{C_{n+2}^1C_{n+1}^r}}+\frac{1}{{C_{n+2}^1C_{n+1}^{r+1}}}$.
故答案為:$\frac{1}{{C_{n+1}^1C_n^r}}=\frac{1}{{C_{n+2}^1C_{n+1}^r}}+\frac{1}{{C_{n+2}^1C_{n+1}^{r+1}}}$.
點評 這是一道新運算類的題目,其特點一般是“新”而不“難”,處理的方法一般為:根據新運算的定義,將已知中的數據代入進行運算,易得最終結果.
科目:高中數學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{2}{3}$ | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | |$\overrightarrow{a}$•$\overrightarrow$|=|$\overrightarrow{a}$||$\overrightarrow$| | B. | ($\overrightarrow{a}$•$\overrightarrow$)2=$\overrightarrow{{a}^{2}}$•$\overrightarrow{^{2}}$ | C. | 若$\overrightarrow{a}$⊥($\overrightarrow$-$\overrightarrow{c}$)則$\overrightarrow{a}$•$\overrightarrow$=$\overrightarrow{a}$•$\overrightarrow{c}$ | D. | 若$\overrightarrow{a}$•$\overrightarrow$=$\overrightarrow{a}$•$\overrightarrow{c}$則$\overrightarrow$=$\overrightarrow{c}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{{\sqrt{3}}}{2}$ | B. | 1 | C. | -$\frac{{\sqrt{2}}}{2}$ | D. | $\frac{{\sqrt{2}}}{2}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com