【題目】已知數(shù)列{an}的通項(xiàng)公式為an= ,n∈N*
(1)求數(shù)列{ }的前n項(xiàng)和Sn
(2)設(shè)bn=anan+1 , 求{bn}的前n項(xiàng)和Tn .
【答案】
(1)解:由an= ,n∈N*,
∴ = =4n﹣1,
∴數(shù)列{ }是以3為首項(xiàng),以4為公差的等差數(shù)列,
∴數(shù)列{ }的前n項(xiàng)和Sn= =2n2+n
(2)解:bn=anan+1= = ( ﹣ ),
∴{bn}的前n項(xiàng)和Tn,Tn=b1+b2+b3+…+bn,
= [(1﹣ )+( ﹣ )+( ﹣ )+…+( ﹣ )],
= (1﹣ ),
= ,
Tn=
【解析】(1)由an= ,n∈N* , 則 = =4n﹣1,數(shù)列{ }是以3為首項(xiàng),以4為公差的等差數(shù)列,根據(jù)等差數(shù)列前n項(xiàng)和公式,即可求得Sn;(2)由bn=anan+1= = ( ﹣ ),采用“裂項(xiàng)法”,即可求得{bn}的前n項(xiàng)和Tn .
【考點(diǎn)精析】關(guān)于本題考查的數(shù)列的前n項(xiàng)和和數(shù)列的通項(xiàng)公式,需要了解數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系;如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個(gè)公式表示,那么這個(gè)公式就叫這個(gè)數(shù)列的通項(xiàng)公式才能得出正確答案.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O過平行四邊形ABCT的三個(gè)頂點(diǎn)B,C,T,且與AT相切,交AB的延長線于點(diǎn)D.
(1)求證:AT2=BTAD;
(2)E、F是BC的三等分點(diǎn),且DE=DF,求∠A.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某產(chǎn)品有4件正品和2件次品混在了一起,現(xiàn)要把這2件次品找出來,為此每次隨機(jī)抽取1件進(jìn)行測試,測試后不放回,直至次品全部被找出為止.
(1)求“第1次和第2次都抽到次品”的概率;
(2)設(shè)所要測試的次數(shù)為隨機(jī)變量X,求X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知F(x)=,x∈(-1,+∞).
(1)求F(x)的單調(diào)區(qū)間;
(2)求函數(shù)F(x)在[1,5]上的最值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),且當(dāng)x>0時(shí),f(﹣x)+f(x+3)=0;當(dāng)x∈(0,3)時(shí),f(x)= ,其中e是自然對數(shù)的底數(shù),且e≈2.72,則方程6f(x)﹣x=0在[﹣9,9]上的解的個(gè)數(shù)為( )
A.4
B.5
C.6
D.7
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)、為曲線:上兩點(diǎn),與的橫坐標(biāo)之和為.
(1)求直線的斜率;
(2)為曲線上一點(diǎn),在處的切線與直線平行,且,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= .
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若g(x)=xf(x)+mx在區(qū)間(0,e]上的最大值為﹣3,求m的值;
(3)若x≥1時(shí),有不等式f(x)≥ 恒成立,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2﹣ax+b(a>0,b>0)有兩個(gè)不同的零點(diǎn)m,n,且m,n和﹣2三個(gè)數(shù)適當(dāng)排序后,即可成為等差數(shù)列,也可成為等比數(shù)列,則a+b的值為( )
A.7
B.8
C.9
D.10
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在(﹣∞,0)∪(0,+∞)上的函數(shù)f(x),如果對于任意給定的等比數(shù)列{an},{f(an)}仍是等比數(shù)列,則稱f(x)為“保等比數(shù)列函數(shù)”.現(xiàn)有定義在(﹣∞,0)∪(0,+∞)上的如下函數(shù):①f(x)=x2;②f(x)=2x;③f(x)= ;④f(x)=ln|x|.則其中是“保等比數(shù)列函數(shù)”的f(x)的序號為( )
A.①②
B.③④
C.①③
D.②④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com