【題目】某省高考改革新方案,不分文理科,高考成績實行“”的構(gòu)成模式,第一個“3”是語文、數(shù)學(xué)、外語,每門滿分150分,第二個“3”由考生在思想政治、歷史、地理、物理、化學(xué)、生物6個科目中自主選擇其中3個科目參加等級性考試,每門滿分100分,高考錄取成績卷面總分滿分750分.為了調(diào)查學(xué)生對物理、化學(xué)、生物的選考情況,將“某市某一屆學(xué)生在物理、化學(xué)、生物三個科目中至少選考一科的學(xué)生”記作學(xué)生群體,從學(xué)生群體中隨機抽取了50名學(xué)生進(jìn)行調(diào)查,他們選考物理,化學(xué),生物的科目數(shù)及人數(shù)統(tǒng)計如下表:
(I)從所調(diào)查的50名學(xué)生中任選2名,求他們選考物理、化學(xué)、生物科目數(shù)量不相等的概率;
(II)從所調(diào)查的50名學(xué)生中任選2名,記表示這2名學(xué)生選考物理、化學(xué)、生物的科目數(shù)量之差的絕對值,求隨機變量的分布列和數(shù)學(xué)期望;
(III)將頻率視為概率,現(xiàn)從學(xué)生群體中隨機抽取4名學(xué)生,記其中恰好選考物理、化學(xué)、生物中的兩科目的學(xué)生數(shù)記作,求事件“”的概率.
【答案】(Ⅰ); (Ⅱ)見解析; (Ⅲ).
【解析】試題分析:(Ⅰ)設(shè)“所選取的2名學(xué)生選考物理、化學(xué)、生物科目數(shù)量相等”為事件的概率,從而得到選考物理、化學(xué)、生物科目數(shù)量不相等的概率;
(Ⅱ)由題意得到隨機變量的取值,計算其概率,列出分布列,根據(jù)公式求解數(shù)學(xué)期望.
(Ⅲ)由題意得所調(diào)查的學(xué)生中物理、化學(xué)、生物選考兩科目的學(xué)生的人數(shù),得到相應(yīng)的概率,即可求解“”的概率.
試題解析:(Ⅰ)記“所選取的2名學(xué)生選考物理、化學(xué)、生物科目數(shù)量相等”為事件A
則
所以他們選考物理、化學(xué)、生物科目數(shù)量不相等的概率為
(Ⅱ)由題意可知X的可能取值分別為0,1,2
,
從而X的分布列為
X | 0 | 1 | 2 |
P |
(Ⅲ)所調(diào)查的50名學(xué)生中物理、化學(xué)、生物選考兩科目的學(xué)生有25名
相應(yīng)的概率為,所以
所以事件“”的概率為
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+2ax+2,
(1)求實數(shù)a的取值范圍,使函數(shù)y=f(x)在區(qū)間[﹣5,5]上是單調(diào)函數(shù);
(2)若x∈[﹣5,5],記y=f(x)的最大值為g(a),求g(a)的表達(dá)式并判斷其奇偶性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,點 的極坐標(biāo)是,曲線 的極坐標(biāo)方程為.以極點為坐標(biāo)原點,極軸為 軸的正半軸建立平面直角坐標(biāo)系,斜率為 的直線 經(jīng)過點.
(1)寫出直線 的參數(shù)方程和曲線 的直角坐標(biāo)方程;
(2)若直線 和曲線相交于兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的右焦點為,點在橢圓上.
(1)求橢圓的方程;
(2)過點的直線,交橢圓于兩點,點在橢圓上,坐標(biāo)原點恰為的重心,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某研究小組在電腦上進(jìn)行人工降雨模擬實驗,準(zhǔn)備用A、B、C三種人工降雨方式分別對甲、乙、丙三地實施人工降雨,其實驗統(tǒng)計結(jié)果如下
方式 | 實施地點 | 大雨 | 中雨 | 小雨 | 模擬實驗次數(shù) |
A | 甲 | 2次 | 6次 | 4次 | 12次 |
B | 乙 | 3次 | 6次 | 3次 | 12次 |
C | 丙 | 2次 | 2次 | 8次 | 12次 |
假定對甲、乙、丙三地實施的人工降雨彼此互不影響,且不考慮洪澇災(zāi)害,請根據(jù)統(tǒng)計數(shù)據(jù):
(1)求甲、乙、丙三地都恰為中雨的概率;
(2)考慮不同地區(qū)的干旱程度,當(dāng)雨量達(dá)到理想狀態(tài)時,能緩解旱情,若甲、丙地需中雨或大雨即達(dá)到理想狀態(tài),乙地必須是大雨才達(dá)到理想狀態(tài),記“甲、乙、丙三地中緩解旱情的個數(shù)”為隨機變量,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大理石工廠初期花費98萬元購買磨大理石刀具,第一年需要各種費用12萬元,從第二年起,每年所需費用比上一年增加4萬元,該大理石加工廠每年總收入50萬元.
(1)到第幾年末總利潤最大,最大值是多少?
(2)到第幾年末年平均利潤最大,最大值是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知⊙: 與⊙: ,以, 分別為左右焦點的橢圓: 經(jīng)過兩圓的交點.
(Ⅰ)求橢圓的方程;
(Ⅱ), 分別為橢圓的左右頂點, , , 是橢圓上非頂點的三點,若∥, ∥,試問的面積是否為定值?若是,求出這個定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了普及環(huán)保知識,增強環(huán)保意識,某校從理科甲班抽取60人,從文科乙班抽取50人參加環(huán)保知識測試.
優(yōu)秀人數(shù) | 非優(yōu)秀人數(shù) | 總計 | |
甲班 | |||
乙班 | 30 | ||
總計 | 60 |
(Ⅰ)根據(jù)題目完成列聯(lián)表,并據(jù)此判斷是否有的把握認(rèn)為環(huán)保知識成績優(yōu)秀與學(xué)生的文理分類有關(guān).
(Ⅱ)現(xiàn)已知, , 三人獲得優(yōu)秀的概率分別為, , ,設(shè)隨機變量表示, , 三人中獲得優(yōu)秀的人數(shù),求的分布列及期望.
附: ,
0.100 | 0.050 | 0.025 | 0.010 | 0.005 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某科研小組研究發(fā)現(xiàn):一棵水果樹的產(chǎn)量(單位:百千克)與肥料費用(單位:百元)滿足如下關(guān)系: .此外,還需要投入其它成本(如施肥的人工費等)百元.已知這種水果的市場售價為16元/千克(即16百元/百千克),且市場需求始終供不應(yīng)求.記該棵水果樹獲得的利潤為(單位:百元).
(1)求的函數(shù)關(guān)系式;
當(dāng)投入的肥料費用為多少時,該水果樹獲得的利潤最大?最大利潤是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com