選修4-1:幾何證明選講
如圖,直線AB經過⊙O上的點C,并且OA=OB,CA=CB,⊙O交直線OB于E、D,連結EC、CD。
(Ⅰ)求證:直線AB是⊙O的切線;
(Ⅱ)若tan∠CED=,⊙O的半徑為3,求OA的長。
(1)證明:如圖,連接OC,∵OA=OB,CA=CB ∴OC⊥AB
∴AB是⊙O的切線 ……………………………………4分
(2)解:∵ED是直徑,∴∠ECD=90°∴∠E+∠EDC=90°
又∵∠BCD+∠OCD=90°,∠OCD=∠ODC,
∴∠BCD=∠E
又∵∠CBD+∠EBC,∴△BCD∽△BEC
∴ ∴BC2=BD•BE
∵tan∠CED=,∴
∵△BCD∽△BEC, ∴
設BD=x,則BC=2
又BC2=BD•BE,∴(2x)2=x•( x+6)
解得:x1=0,x2=2, ∵BD=x>0, ∴BD=2
∴OA=OB=BD+OD=3+2=5 ……………………………………10分
科目:高中數(shù)學 來源: 題型:
AC |
AE |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年河北省高三第一次高考仿真測試文科數(shù)學試卷(解析版) 題型:解答題
(本小題滿分10分)選修4-1:幾何證明選講
已知為半圓的直徑,,為半圓上一點,過點作半圓的切線,過點作于,交半圓于點,.
(Ⅰ)求證:平分;
(Ⅱ)求的長.
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011學年江蘇省、金陵中學、南京外國語學校高三三校聯(lián)考數(shù)學卷 題型:解答題
A.選修4-1:幾何證明選講
|
如圖,設AB為⊙O的任一條不與直線l垂直的直徑,P是⊙O與l的公共點,AC⊥l,BD⊥l,垂足分別為C,D,且PC=PD.求證:(1)l是⊙O的切線;(2)PB平分∠ABD.
B.選修4-2:矩陣與變換
(本小題滿分10分)
已知點A在變換:T:→=作用后,再繞原點逆時針旋轉90°,得到點B.若點B坐標為(-3,4),求點A的坐標.
C.選修4-4:坐標系與參數(shù)方程
(本小題滿分10分)
求曲線C1:被直線l:y=x-所截得的線段長.
D.選修4-5:不等式選講
(本小題滿分10分)
已知a、b、c是正實數(shù),求證:≥.
查看答案和解析>>
科目:高中數(shù)學 來源:2012屆河南省高二下學期期末考試數(shù)學 題型:解答題
(本小題滿分10分)選修4-1:幾何證明選講
如圖,已知ABC中的兩條角平分線和相交于,
B=60,在上,且。
(Ⅰ)證明:四點共圓;
(Ⅱ)證明:CE平分DEF。
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com