時維壬辰,序?qū)僦俅,值春耕播種時機,某中學生物研究性學習小組對春季晝夜溫差大小與水稻發(fā)芽率之間的關(guān)系進行研究,記錄了實驗室4月10日至4月14日的每天晝夜溫差與每天每50顆稻籽浸泡后的發(fā)芽數(shù),得到如下資料:
日    期4月10日4月11日4月12日4月13日4月14日
溫  差x(℃)1012131411
發(fā)芽數(shù)y(顆)1113141612
(Ⅰ)從4月10日至4月14日中任選2天,記發(fā)芽的種子數(shù)分別為m,n,求事件“m,n均小于14”的概率;
(Ⅱ)根據(jù)表中的數(shù)據(jù)可知發(fā)芽數(shù)y(顆)與溫差x(℃)呈線性相關(guān),請求出發(fā)芽數(shù)y關(guān)于溫差x的線性回歸方程y=bx+a.
【答案】分析:(I)用數(shù)組(m,n)表示選出2天的發(fā)芽情況,用列舉法可得m,n的所有取值情況,分析可得m,n均不小于14的情況數(shù)目,由古典概型公式,計算可得答案;
(II)根據(jù)所給的數(shù)據(jù),先做出x,y的平均數(shù),即做出本組數(shù)據(jù)的樣本中心點,根據(jù)最小二乘法求出線性回歸方程的系數(shù),寫出線性回歸方程.
解答:解:(Ⅰ)m,n構(gòu)成的基本事件(m,n)有:(11,13),(11,14),(11,16),(11,12),(13,14),(13,16),(13,12),(14,16),(14,12),(16,12),共有10個.
其中“m,n均小于14”的有3個,其概率為.、、、、、、、、、、、、、、、、、、、(6分)
(Ⅱ)∵,
==1.2.
于是,=13.2-1.2×12=-1.2.
故所求線性回歸方程為 y=1.2x-1.2、、、、、、、、、、、、、、、、、、、(12分)
點評:本題考查回歸直線方程的計算與應用,涉及古典概型的計算,是基礎(chǔ)題,在計算線性回歸方程時計算量較大,注意正確計算.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2012•淮北二模)時維壬辰,序?qū)僦俅,值春耕播種時機,某中學生物研究性學習小組對春季晝夜溫差大小與水稻發(fā)芽率之間的關(guān)系進行研究,記錄了實驗室4月10日至4月14日的每天晝夜溫差與每天每50顆稻籽浸泡后的發(fā)芽數(shù),得到如下資料:
日    期 4月10日 4月11日 4月12日 4月13日 4月14日
溫  差x(℃) 10 12 13 14 11
發(fā)芽數(shù)y(顆) 11 13 14 16 12
(Ⅰ)從4月10日至4月14日中任選2天,記發(fā)芽的種子數(shù)分別為m,n,求事件“m,n均小于14”的概率;
(Ⅱ)根據(jù)表中的數(shù)據(jù)可知發(fā)芽數(shù)y(顆)與溫差x(℃)呈線性相關(guān),請求出發(fā)芽數(shù)y關(guān)于溫差x的線性回歸方程y=bx+a.

查看答案和解析>>

同步練習冊答案