將正整數(shù)2,3,4,5,6,7,…,n,…作如下分類:(2),(3,4),(5,6,7),(8,9,10,11),…,分別計算各組包含的正整數(shù)的和,記為S1,S2,S3,S4,…,記Tn=S1+S3+S5+…+S2n-1
(1)分別求T1,T2,T3的值;
(2)請猜測Tn的結(jié)果,并用數(shù)學(xué)歸納法證明.
【答案】分析:(1)第n組有n個從小到大連續(xù)的正整數(shù),可求得第1個數(shù)是+2,利用等差數(shù)列的求和公式得Sn=+2(n∈N*),從而可求得S1=2,S3=18,S5=70,繼而可得T1,T2,T3的值;
(2)猜想:Tn=n2(n2+1),(n∈N*),利用數(shù)學(xué)歸納法證明即可,特別注意,假設(shè)當(dāng)n=k(k∈N*)時,猜測成立,即Tk=k2(k2+1)去推證n=k+1時等式也成立,要用好歸納假設(shè).
解答:解:(1)第n組有n個從小到大連續(xù)的正整數(shù),且第1個數(shù)是[1+2+3+…+(n-1)]+2=+2,
故Sn=n[+2]+=+2(n∈N*).
S1=2,S3=18,S5=70,T1=S1=2,
T2=S1+S3=2+18=20,
T3=S1+S3+S5=2+18+70=90.…(6分)
(2)由(1)知T1=2=1×2=12×(12+1),
T2=20=4×5=22×(22+1),
T3=90=9×10=32×(32+1)
猜想:Tn=n2(n2+1),(n∈N*).      …(10分)
證明:(。┊(dāng)n=1時,已知成立.
(ⅱ)假設(shè)n=k(k∈N*)時,猜測成立,即Tk=k2(k2+1).則n=k+1時,
Tk+1=Tk+S2k+1=k2(k2+1)+
因為(k+1)2[(k+1)2+1]-k2(k2+1)-
=[(k+1)4-k4]+[(k+1)2-k2]-
=[(k+1)2+k2][(k+1)2-k2]+(2k+1)-(2k+1)(2k2+2k+2)
=(2k+1)(2k2+2k+2)-(2k+1)(2k2+2k+2)
=0,
所以k2(k2+1)+=(k+1)2[(k+1)2+1],即n=k+1時,猜測成立.
根據(jù)(ⅰ)(ⅱ),Tn=n2(n2+1)(n∈N*)成立. …(16分)
點評:本題考查簡單的合情推理,突出考查數(shù)學(xué)歸納法的應(yīng)用,(1)中求得Sn=+2(n∈N*)是難點,(2)猜想:Tn=n2(n2+1)(n∈N*)是關(guān)鍵,考查運算與推理證明的能力,屬于難題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

12、已知正整數(shù)數(shù)列:1,2,3,4,5,…,將其中的完全平方數(shù)刪去,形成一個新的數(shù)列2,3,5,…,則新數(shù)列的第100項是
110

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將正整數(shù)2,3,4,5,6,7,…,n,…作如下分類:(2),(3,4),(5,6,7),(8,9,10,11),…,分別計算各組包含的正整數(shù)的和,記為S1,S2,S3,S4,…,記Tn=S1+S3+S5+…+S2n-1
(1)分別求T1,T2,T3的值;
(2)請猜測Tn的結(jié)果,并用數(shù)學(xué)歸納法證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列{an}的首項和公差都是
23
,記{an}前n項和為Sn.等比數(shù)列{bn}各項均為正數(shù),公比為q,記{bn}的前n項和為Tn
(Ⅰ) 寫出Si(i=1,2,3,4,5)構(gòu)成的集合A;
(Ⅱ) 若q為正整數(shù),問是否存在大于1的正整數(shù)k,使得Tk,T2k同時為集合A中的元素?若存在,寫出所有符合條件的{bn}的通項公式;若不存在,請說明理由;
(Ⅲ) 若將Sn中的整數(shù)項按從小到大的順序構(gòu)成數(shù)列{cn},求{cn}的一個通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

將正整數(shù)2,3,4,5,6,7,…,n,…作如下分類:(2),(3,4),(5,6,7),(8,9,10,11),…,分別計算各組包含的正整數(shù)的和,記為S1,S2,S3,S4,…,記Tn=S1+S3+S5+…+S2n-1
(1)分別求T1,T2,T3的值;
(2)請猜測Tn的結(jié)果,并用數(shù)學(xué)歸納法證明.

查看答案和解析>>

同步練習(xí)冊答案