【題目】在平面直角坐標系中,曲線,以為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.

1)求曲線的極坐標方程和曲線的直角坐標方程;

2)設點在曲線上,直線交曲線于點,求的最小值.

【答案】1)曲線的極坐標方程為,曲線的直角坐標方程為;(2.

【解析】

1)由可將曲線的方程化為極坐標方程,在曲線的極坐標方程兩邊平方得,由可將曲線的極坐標方程化為直角坐標方程;

2)根據題意得出,,然后利用換元法和三角函數(shù)關系式的恒等變換并結合基本不等式可求出的最小值.

1)將代入得,

所以曲線的極坐標方程為.

曲線的方程可化為,

,得,

所以的直角坐標方程為

(2)由(1)及題設條件知,,,其中

所以,令,

因為,所以,所以,

所以,

當且僅當,即,時等號成立.

所以的最小值為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在橢圓上任取一點不為長軸端點),連結,并延長與橢圓分別交于點、兩點,已知的周長為8,面積的最大值為.

1)求橢圓的方程;

2)設坐標原點為,當不是橢圓的頂點時,直線和直線的斜率之積是否為定值?若是定值,請求出這個定值;若不是定值,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=丨x+a+1丨+丨x-丨,(a>0)。

(1)證明:f(x)≥5;

(2)若f(1)<6成立,求實數(shù)a的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,過焦點且垂直于軸的直線被橢圓所截得的弦長為.

1)求橢圓的標準方程;

2)若經過點的直線與橢圓交于不同的兩點是坐標原點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線、與平面滿足,,,則下列命題中正確的是(

A.的充分不必要條件

B.的充要條件

C.,則的必要不充分條件

D.,則的既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)若,求的極值;

(2)若,都有成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,以原點O為極點,x軸的正半軸為極軸,建立極坐標系,曲線C的極坐標方程為1+cos2θ=8sinθ

1)求曲線C的普通方程;

2)直線l的參數(shù)方程為,t為參數(shù)直線y軸交于點F與曲線C的交點為A,B,當|FA||FB|取最小值時,求直線的直角坐標方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù).

1)討論的單調性;

2)若有兩個極值點,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩個商場同時出售一款西門子冰箱,其中甲商場位于老城區(qū)中心,乙商場位于高新區(qū).為了調查購買者的年齡與購買冰箱的商場選擇是否具有相關性,研究人員隨機抽取了1000名購買此款冰箱的用戶作調研,所得結果如表所示:

50歲以上

50歲以下

選擇甲商場

400

250

選擇乙商場

100

250

1)判斷是否有的把握認為購買者的年齡與購買冰箱的商場選擇具有相關性;

2)由于乙商場的銷售情況未達到預期標準,商場決定給冰箱的購買者開展返利活動具體方案如下:當天賣出的前60臺(含60臺)冰箱,每臺商家返利200元,賣出60臺以上,超出60臺的部分,每臺返利50.現(xiàn)將返利活動開展后15天內商場冰箱的銷售情況統(tǒng)計如圖所示:與此同時,老張得知甲商場也在開展返利活動,其日返利額的平均值為11000元,若老張將選擇返利較高的商場購買冰箱,請問老張應當去哪個商場購買冰箱

附:,其中.

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

同步練習冊答案