【題目】已知直線與圓交于兩點(diǎn)

1求線的垂直平分線的方程;

2,求的值;

32的條件下,求過(guò)點(diǎn)的圓的切線方程。

【答案】1 2 3

【解析】

試題分析:1由題意,線段垂直平分線經(jīng)過(guò)圓的圓心斜率為,可得線段垂直平分線的方程;2利用,求出圓心到直線的距離,利用點(diǎn)到直線的距離公式求出圓心到直線的距離,從而可求;3用點(diǎn)斜式設(shè)出直線方程,相切可得,注意討論斜率不存在時(shí),為本題易錯(cuò)點(diǎn).

試題解析:1由題意,線段AB的垂直平分線經(jīng)過(guò)圓的圓心,斜率為,

方程為,即;

2可化為

|AB|=2,圓心到直線的距離為=,

圓心到直線的距離為,

3由題意,知點(diǎn)不在圓上.

當(dāng)所求切線的斜率存在時(shí),設(shè)切線方程為,即

由圓心到切線的距離等于半徑,得,

解得,所以所求切線的方程為

當(dāng)所求切線的斜率不存在時(shí),切線方程為

綜上,所求切線的方程為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)若的一個(gè)極值點(diǎn),求的值;

2)討論的單調(diào)區(qū)間;

3)當(dāng)時(shí),求函數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,棱長(zhǎng)為1的正方體中,點(diǎn)P是線段上的動(dòng)點(diǎn).當(dāng)在平面,平面,平面ABCD上的正投影都為三角形時(shí),將它們的面積分別記為,,

1)當(dāng)時(shí),________(用“=”填空);

2的最大值為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從某網(wǎng)站的程序員中隨機(jī)抽取名統(tǒng)計(jì)其年齡數(shù)據(jù)如下表:

年齡

23

26

27

30

32

34

38

人數(shù)

1

3

3

5

4

3

1

1)求這名程序員的平均年齡及年齡的眾數(shù)、中位數(shù);

2)若這名程序員中年齡不超過(guò)歲,且學(xué)歷是研究生及其以上有人,歲以上且學(xué)歷是本科及其以下有人,完成下面的列聯(lián)表,并判斷是否有%的把握認(rèn)為該網(wǎng)站程序員的學(xué)歷與年齡有關(guān).

年齡≤30

年齡>30

學(xué)歷研究生及其以上

學(xué)歷本科及其以下

附:

0.15

0.10

0.05

0.025

0.01

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】近年來(lái),隨著我市經(jīng)濟(jì)的快速發(fā)展,政府對(duì)民生越來(lái)越關(guān)注市區(qū)現(xiàn)有一塊近似正三角形的土地(如圖所示),其邊長(zhǎng)為2百米,為了滿足市民的休閑需求,市政府?dāng)M在三個(gè)頂點(diǎn)處分別修建扇形廣場(chǎng),即扇形,其中、分別相切于點(diǎn),且無(wú)重疊,剩余部分(陰影部分)種植草坪.設(shè)長(zhǎng)為(單位:百米),草坪面積為(單位:萬(wàn)平方米).

1)試用分別表示扇形的面積,并寫(xiě)出的取值范圍;

2)當(dāng)為何值時(shí),草坪面積最大?并求出最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)P是拋物線C:上任意一點(diǎn),過(guò)點(diǎn)P作直線PH⊥x軸,點(diǎn)H為垂足.點(diǎn)M是直線PH上一點(diǎn),且在拋物線的內(nèi)部,直線l過(guò)點(diǎn)M交拋物線C于A、B兩點(diǎn),且點(diǎn)M是線段AB的中點(diǎn).

(1)證明:直線l平行于拋物線C在點(diǎn)P處切線;

(2)若|PM|=, 當(dāng)點(diǎn)P在拋物線C上運(yùn)動(dòng)時(shí),△PAB的面積如何變化?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知M,N是焦點(diǎn)為F的拋物線y2=2px(p>0)上兩個(gè)不同的點(diǎn),線段MN的中點(diǎn)A的橫坐標(biāo)為.

(1)|MF|+|NF|的值;

(2)p=2,直線MNx軸交于點(diǎn)B,求點(diǎn)B的橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,平面ABCD,底部ABCD為菱形,ECD的中點(diǎn).

(Ⅰ)求證:BD⊥平面PAC;

(Ⅱ)若∠ABC=60°,求證:平面PAB⊥平面PAE;

(Ⅲ)棱PB上是否存在點(diǎn)F,使得CF∥平面PAE?說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)高二年級(jí)組織外出參加學(xué)業(yè)水平考試,出行方式為:乘坐學(xué)校定制公交或自行打車(chē)前往,大數(shù)據(jù)分析顯示,當(dāng)的學(xué)生選擇自行打車(chē),自行打車(chē)的平均時(shí)間為 (單位:分鐘) ,而乘坐定制公交的平均時(shí)間不受影響,恒為40分鐘,試根據(jù)上述分析結(jié)果回答下列問(wèn)題:

(1)當(dāng)在什么范圍內(nèi)時(shí),乘坐定制公交的平均時(shí)間少于自行打車(chē)的平均時(shí)間?

(2)求該校學(xué)生參加考試平均時(shí)間的表達(dá)式:討論的單調(diào)性,并說(shuō)明其實(shí)際意義.

查看答案和解析>>

同步練習(xí)冊(cè)答案